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Abstract

This paper proposes a semiparametric method to control for ability using standardized test

scores, or other item response assessments, in a regression model. The proposed method is

based on a model in which the parameter of interest is invariant to monotonic transformations of

ability. I show that the estimator is consistent as both the number of observations and the number

of items on the test grow to infinity. I also derive conditions under which this estimator is root-

n consistent and asymptotically normal. The proposed method is easy to implement, does not

impose a parametric item response model, and does not require item level data. I demonstrate

the finite sample performance in a Monte Carlo study and implement the procedure for a wage

regression using data from the NLSY1979.
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1 Introduction

In classical test theory (CTT), a test score, typically measured as the number or percent of items
answered correctly, is viewed as an error-laden measurement of ability (Lord and Novick, 1968).
In item response theory (IRT), performance on a test is modeled at the level of each individual
question, or item, and such models are used to develop more sophisticated scoring of tests (van der
Linden and Hambleton, 1997). The common practice of controlling for ability by conditioning on
test scores, and the interpretation of the test score as a “proxy” (in the sense of Wooldridge, 2009), is
not consistent with standard CTT or IRT models.1 In this paper, I use item response theory to argue
that there are two important distinctions between latent ability and measured test scores. First, to
the extent that adding items to a test will change test scores, due to idiosyncratic factors influencing
responses to each item, but will not change ability, the test score is contaminated with measurement
error. Second, since ability is measured on an ordinal scale (Lord, 1975; Zwick, 1992), any test
score imposes an arbitrary scale restriction and regression estimates are dependent on this scale.

This paper studies these problems in the context of a regression model with binary item re-
sponses. I propose estimating a partially linear regression model using the double residual method
of Robinson (1988). The paper makes three main theoretical contributions. First, I argue that the
partially linear regression model is invariant to monotonic transformations of ability. Second, I show
that the estimator is consistent as both the number of observations (n) and the number of items on
the test (J) grow to infinity. This type of asymptotic analysis has been used previously to study
IRT models with a large number of items (Haberman, 1977; Douglas, 1997; Williams, 2018a) and
alternative asymptotic sequences have been used similarly in other contexts as well (Chesher, 1991;
Bekker, 1994; Hahn and Kuersteiner, 2002). Third, I derive conditions under which this estima-
tor is root-n consistent and asymptotically normal. These conditions include the requirement that
√
n/J → 0, which ensures that the measurement error bias is asymptotically negligible. The method

proposed in this paper is easy to implement, does not impose a parametric item response model, and
does not require item level data. In a companion paper, Williams (2018b), I discuss the possibility
of bias-correction when

√
n/J → γ > 0 with item level data.

This paper is related to two separate lines of research. Mislevy (1991) argues for the publication
of institutional plausible values rather than test scores to address the measurement error. Schofield
et al. (2014) raise some concerns with this approach and suggest correcting for measurement error by
jointly modeling the economic outcome and the test items (see also Junker et al., 2012; Schofield,
2015). Lockwood and McCaffrey (2014) evaluate the effect of test score measurement error in
teacher value-added estimates and propose various methods for bias correction. These papers rely on

1An exception is if the outcome is determined in part by the test score itself, not latent ability. This is the case, for
example, if the outcome is college enrollment and the test score is the individual’s SAT score since scores on the SAT
are used to determine acceptance into college.
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parametric item response models to correct for measurement error and assume that ability enters the
outcome equation linearly. Ballou (2009), Ho (2009), Bond and Lang (2013), Nielsen (2015), and
others have studied the scale-dependence of test scores, focusing primarily on difficulties this poses
for measuring differences in ability across subpopulations or over time. This paper complements
this important work.

The methodological issues studied in this paper are also closely related to problems studied in
the measurement error literature (Hu and Schennach, 2008; Cunha et al., 2010; Hu and Sasaki, 2015,
2017; Hu, 2017; Agostinelli and Wiswall, 2017). Hu and Sasaki (2015) and Hu and Sasaki (2017)
emphasize that only one measurement needs to be measured to scale. Agostinelli and Wiswall
(2017) show that the scale problem can be partially resolved by using economic restrictions in a
model for the dynamic evolution of latent ability. The analysis in this paper differs in that ability
is allowed to be continuously distributed, while the test score is not continuously distributed as it is
constructed from binary responses to individual items. Latent variables models with this structure
have received less attention in econometrics. One exception is Spady (2007) who jointly models
economic behaviors and individual responses to questionnaires meant to elicit cultural and economic
attitudes using a flexible parametric item response model to estimate the effect of these attitudes on
behaviors. See also Williams (2018a).

Controlling for ability is particularly important in estimating the returns to schooling (Becker,
1967). Various methods have been used to control for ability bias while addressing the measurement
error problem. Bollinger (2003) uses the Klepper and Leamer (1984) bounds to study the black-
white wage gap, controlling for ability. Goldberger (1972), Chamberlain and Griliches (1975),
and others have employed structural equation modeling in this setting and, more recently, more
sophisticated methods for using additional measurements in a factor analytic approach in linear and
nonlinear models have been developed (Cunha et al., 2010; Heckman et al., 2013). Many empirical
studies of the returns to education use a test score to control for ability without addressing the
measurement error in the statistical analysis. The results of this paper provide a formal foundation
for this approach.

In an empirical application, I demonstrate the method developed in this paper in a regression
model for the returns to education that controls for ability using a sample from the NLSY1979. I
show that regression estimates of the returns to schooling are sensitive to the scale of the test score.
Compared to estimates from regression models where the test score enters the outcome equation
linearly, estimates from the partially linear regression model suggest a 10% larger effect of education
on wages in the subsample of white males. Similar results are found for other subgroups though
sometimes the correction is in the opposite direction.

The use of a test score in place of latent ability is common in many other applications where
conditioning on ability (or other traits) is necessary. See Junker et al. (2012) for a discussion of
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examples in labor economics. Teacher value-added models that are used to identify the role of
individual teachers in student learning are often estimated with test scores without accounting for
measurement error (Chetty et al., 2014; Lockwood and McCaffrey, 2014).2 More generally, the
use of a scalar “score” that aggregates individual items in place of a latent variable is widespread,
not only for test scores but also in personality assessments, political opinion polls, happiness scales,
mental health diagnostics, and many other areas. This approach has also been used to control for hard
to measure economic primitives. Bloom and Van Reenen (2007), for example, aggregate discrete
items from a survey on managerial practices to control for managerial productivity in estimation of
a production function.

The rest of the paper is structured as follows. In Section 2, I describe an item response model and
outline the main results. In Section 3, I describe the proposed semiparametric estimator, provide the
main theoretical results regarding this estimator, and provide some Monte Carlo evidence regarding
its behavior in finite samples. In Section 4, the proposed method is used to estimate the return
to education controlling for various dimensions of ability. Section 5 discusses the lack of a need
for a conditioning model and discusses some related work. Section 6 concludes. In Appendix A
I state additional technical conditions for the theoretical results and all proofs are contained in the
supplementary appendix.

2 An item response model and the bias of OLS

Let Mi = (Mi1, . . . ,MiJ) where each Mij denotes individual i’s binary response to the jth item on
the test. The theoretical results in this paper pertain to the percent correct measure of ability, M̄i =

J−1
∑J

j=1Mij . Item response theory provides microfoundations for this nonparametric estimate
of ability (Lord and Novick, 1968). As a starting point, consider the following restrictions on the
joint distribution of the item responses, Mi, and the latent ability, θi, which are typical in the item
response literature (Sijtsma and Junker, 2006).

Assumption 2.1.

LI (Local independence) For any m ∈ {0, 1}J ,

Pr(Mi = m | θi) =
J∏
j=1

Pr(Mij = mj | θ).

U (Unidimensionality) θi is scalar.

2Teacher value-added in some cases is estimated as the coefficients on teacher dummies in a regression of test scores
on the previous year’s test scores.
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M (Monotonicity) The item response functions, pj(θi) := Pr(Mij = 1 | θi), are nondecreasing

in θi, for each j.

Most parametric IRT models for binary responses can be derived from a linear latent index
structure. For example, consider the model Mij = 1(δj(θi − αj) ≥ εij) where εij is independent
of θi and is assumed to follow a standard normal distribution or a logistic distribution. Under this
parameterization, δj is called the discrimination parameter and αj is called the difficulty parameter.
If εij is normally distributed, this is commonly referred to as the normal ogive model (Lord, 1952).
The Rasch model (Rasch, 1961) imposes δj = 1 and uses the logistic distribution for εij . The three
parameter logistic (3PL) model is a popular extension of the Rasch model that allows for a nonzero
probability of a positive response when θi → −∞ (Birnbaum, 1968). In the 3PL model the item
response functions take the form

γj +
1− γj

1 + exp(−δj(θi − αj))
.

While these models have been extended to models with multinomial Mij , models with multiple
dimensions of θi, ordered response models, models of adaptive tests, and models with partial credit
scoring, among many others (van der Linden and Hambleton, 1997), it is still common practice to
score tests using the 3PL model. In this paper, however, I do not specify any functional form for the
item response functions.

The score M̄i is a noisy measure of a monotonic transformation of ability. To see this, define
p̄(θi) := J−1

∑J
j=1 pj(θi). Then M̄i = p̄(θi) + ηi where E(ηi | θi) = 0 because p̄(θi) = E(M̄i | θi).

So M̄i is a noisy measure of p̄(θi) with mean zero measurement error ηi. IfE(M̄i | θi, Xi) = E(M̄i |
θi) then estimation of a regression of M̄i (as the dependent variable) on explanatory variables, Xi, is
not biased due to the presence of measurement error (i.e., regression slope estimates are not biased).
The same conclusion holds if E(M̄i | θi, Zi) = E(M̄i | θi) for a vector of variables Zi that includes
Xi (Schofield et al., 2014).

Nevertheless, use of M̄i imposes a particular scale on the distribution of ability through the
function p̄. Ho (2009), Bond and Lang (2013), and Nielsen (2015), among others, have demonstrated
how taking different monotonic transformations can change estimates in models with a test score
as a dependent variable, sometimes dramatically.3 To address this problem, Ho (2009) proposes
methods for estimating these objects that are scale-invariant.4 If condition M of Assumption 2.1
is strengthened so that p̄ is a strictly monotonic function (not just a nondecreasing function), then
p̄(θi) is a valid measure of ability when using scale-invariant statistics such as those proposed by Ho

3Bond and Lang (2013), for example, demonstrate how this affects estimates of the black-white gap and trends over
time in this gap in early childhood. They find that under some monotonic transformations the gap widens substantially
between Kindergarten and 3rd grade but under other monotonic transformations it does not grow at all.

4Altonji et al. (2012) propose a related method for converting two tests to the same scale.
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(2009).
While this paper studies the use of M̄i as a measure of ability, similar results could be derived

for the case where the score consists of an estimate from a parametric IRT model. Parametric IRT
models, such as the 3PL model, are typically estimated via maximum likelihood or other likelihood-
based methods. The item parameters, αj, δj, and γj , as well as the individual ability parameters,
θi, are estimated. In large-scale education surveys, reported test scores often take the form of esti-
mates of θi from such a model. See, for example, NCES (2009) and Ing et al. (2012). One common
methodology in such studies involves first estimating the item parameters using a marginal maxi-
mum likelihood method with a discrete distribution for θi, and second estimating θi by separately
maximizing the likelihood of each individual i at the estimated item parameter values (Mislevy and
Bock, 1990; Muraki and Bock, 1997).

These estimates, θ̂i, similarly exhibit measurement error and are scale-dependent. Even if the
item parameters were known, the score θ̂i is an estimate based on a sample of size J . Therefore, for
each i, θ̂i = θi+νi where νi represents finite sample estimation error. Typically νi is only mean zero
in the limit as J → ∞. Furthermore, as ability is understood by most psychologists to be ordinal,
not interval-scaled (Lord, 1975; Zwick, 1992; Ballou, 2009), the criticisms of Ho (2009), Bond and
Lang (2013), and Nielsen (2015) regarding scale-dependence apply to the IRT estimate of ability
too.

While the methods proposed here are meant to complement, rather than replace, other methods
based on θ̂i, there are several advantages to using the percent correct score, M̄i. First, it does not rely
on the correct specification of an item response model.5 Second, it is much simpler to calculate than
θ̂i and, for this reason, it is commonly used in situations where only raw test results are available.
Third, use of M̄i obviates the need for consistency between the econometrician’s model and the
model of the primary analyst who reports the test score (see Mislevy, 1991; Schofield et al., 2014,
for a discussion of this problem). Finally, M̄i, is a sufficient statistic in the Rasch model, and it has
also played a central role in nonparametric item response models (Mokken, 1971; Stout, 1987, 1990;
Junker, 2001). One apparent disadvantage of the use of M̄i, rather than the IRT score, θ̂i, is that it
can be less efficient as it, for example, provides equal weight to items of varying discrimination.

What if, as is common practice among economists, and researchers in other fields, scores such
as θ̂i or M̄i are used as covariates in a regression to control for ability? The measurement error and
scale-dependence of these test scores translate to biased estimates of causal parameters.6 Again, I

5On the other hand, Junker et al. (2012) argue that it is natural to rely on the parametric IRT model used to develop
the test.

6In principle, the fact that ability is ordinal should not bias estimates of causal parameters. Suppose, for example,
that Xi = (Di,Wi) where Di is a treatment indicator or binary choice and suppose that E(Yi | Di = d,Wi, θi) =
E(Ydi | Wi, θi), using the potential outcomes notation. This is the unconfoundedness or selection on observables
assumption. Then, if θ′i = τ(θi), as long as τ is a strictly monotonic transformation, E(Yi | Di = d,Wi, θ

′
i) =

E(Yi | Wi, θ
′
i). Thus treatment effect parameters are identified using either θi or θ′i. However, the linear model

Yi = β0 + β1Di + β′2Wi + β3θi + ui is clearly not scale-invariant in this sense. Indeed, this is the principle underlying

5



focus on the use of M̄i but similar results can be shown for θ̂i. Let β̂OLS denote the OLS estimator
obtained by regressing Yi on Xi and M̄i,

β̂OLS :=

(
n∑
i=1

WiW
′
i

)−1 n∑
i=1

WiYi,

where Wi = (1, X ′i, M̄i)
′. Also, let β̃OLS denote the infeasible version of this estimator that replaces

Wi with W ∗
i = (1, X ′i, p̄(θi))

′. First, consider the following conditions, which can be used to relate
the feasible estimator β̂OLS to the infeasible estimator β̃OLS .

Assumption 2.2.

LIx (Local independence) For any m ∈ {0, 1}J ,

Pr(Mi = m | Xi, θi) =
J∏
j=1

Pr(Mij = mj | Xi, θi).

U (Unidimensionality) θi is scalar.

ER (Exclusion restriction) Pr(Mij = 1 | Xi, θi) = Pr(Mij = 1 | θi) for each j.

M’ (Monotonicity) The average item response functions, p̄(θi), is strictly increasing in θi.

ND (Non-differential measurement) Yi ⊥⊥Mi | θi, Xi.

The first four conditions of Assumption 2.2 extend the IRT assumptions in Assumption 2.1 to
restrict the distribution of Mi | Xi, θi, rather than the distribution of Mi | θi. Also, the monotonicity
assumption has been modified because, as will be demonstrated below, condition M of Assump-
tion 2.1 is not sufficient for the use of M̄i in place of θi in a regression analysis. Condition ND
requires the test score to be uninformative about the outcome, Yi, conditional on latent ability and
Xi. Assumption 2.2 will be discussed further below.

The feasible estimator β̂OLS is asymptotically biased relative to the infeasible estimator β̃OLS

due to the presence of measurement error. Under condition ND of Assumption 2.2, as n → ∞, for
a fixed J ,

β̂OLS − β̃OLS →p −E(WiW
′
i )
−1E(Wi(Wi −W ∗

i )′)βOLS, (2.1)

where βOLS = plimn→∞β̃
OLS denotes the regression estimand. Because ηi is mean zero conditional

on Xi and θi, the factor E(Wi(Wi − W ∗
i )′) can be written as V ar(ηi)eK+2e

′
K+2 where eK+2 =

(0, . . . , 0, 1)′. Further, under condition LIx of Assumption 2.2, V ar(ηi) = O(J−1).

the semiparametric model proposed in this paper.
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In Williams (2018b), I derive the asymptotic distribution of β̂OLS under a double asymptotic
sequence with n, J →∞. I show that if

√
n/J → γ <∞ then

√
n(β̂OLS − βOLS)→ N(γB̄, V̄ ). I

then propose a bias-corrected estimator for βOLS based on a nonparametric estimate of the asymp-
totic bias, B̄.

However, suppose that

Yi = β′1Xi + h(θi) + ei (2.2)

for some function h. The components of βOLS corresponding to coefficients on the vector Xi coin-
cide with β1 in this model only if h(θi) is a linear transformation of p̄(θi).7 However, linearity in p̄(θi)
is no more (or less) plausible an assumption than linearity in any other monotonic transformation
of θi given that ability is not interval-scaled. Moreover, using different monotonic transformations
of θi as a covariate in a regression can produce substantially different estimates of the coefficient
on Xi, as these provide different approximations of the conditional expectation function. This is
demonstrated in the empirical application in Section 4.

Instead, β1 can be estimated using semiparametric methods for the partially linear regression
model. Indeed the model of equation (2.2) is scale-invariant in the sense that β1 could be estimated
in this model using θi or p̄(θi) or any other monotonic transformation of θi. However, the validity
of an estimator of β1 that uses M̄i in place of θi does not follow immediately because M̄i is not a
monotonic transformation of θi. However, because max1≤i≤n |M̄i− p̄(θi)| converges to 0 as J →∞,
consistency of such an estimator as n, J →∞ should follow under sufficient smoothness conditions.
In Section 3, I describe a double-residual method (Robinson, 1988) to estimate the semiparametric
regression model using M̄i. I provide sufficient regularity conditions for consistency in Theorem 3.1.
Asymptotic normality at the root-n rate of semiparametric estimators generally requires the first
stage nonparametric estimator to converge sufficiently quickly (Newey, 1994). In this case, this
requires a restriction on the rate at which J grows with n. The asymptotic distribution is unbiased if
√
n/J → 0. The size of this measurement error bias is perhaps surprising given that max1≤i≤n |M̄i−

p̄(θi)| converges to 0, not at the rate 1/J , but at the slower rate of
√

log(J)/J . See Theorem 3.2.
Beginning in Section 3 below, I modify the notation to index by J to make explicit the depen-

dence on J in the n, J → ∞ asymptotic analysis. So M̄i becomes M̄iJ , p̄(θi) becomes p̄J(θi), and
so on.

Discussion of Assumptions 2.2 As discussed in Sijtsma and Junker (2006), condition LI of As-
sumption 2.1, and similarly condition LIx of Assumption 2.2, is stronger than necessary for many
purposes. Indeed this is one of the advantages of nonparametric IRT models over parametric IRT
models given that the latter are typically estimated using a likelihood derived under this assumption.

7Or, alternatively if E(Xi | θi) is a linear transformation of p̄(θi).
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As discussed in Williams (2018b), β̂OLS is a consistent estimator of βOLS as n, J → ∞ as long
as V ar(ηi) → 0. The semiparametric estimator of Section 3 requires stronger conditions than this
but it is apparent that condition LIx could be weakened, though at the cost of a more complex bias
correction formula and slower convergence rates. Williams (2018a), for example, uses a conditional
mixing condition in place of full conditional independence in a similar context.

One case where these weaker versions of LIx might still be violated is if there is strong temporal
dependence among items. Jannarone (1997)’s model of learning during the test, for example, implies
such dependence. Another implication of LIx is that it limits the type of measurement error allowed
for. It does not, for example, allow for error induced by physical test conditions or the physical or
mental state of the test-taker.

Assumption ER is crucial to the results obtained in this paper. Versions of this restriction are
also imposed in the models studied in Junker et al. (2012), Schofield et al. (2014), and Lockwood
and McCaffrey (2014). Without this assumption the methods studied in this paper fail to disentangle
the effect of Xi on Yi from the effect Xi has on the test score. In some contexts, however, this
assumption is clearly violated. For example, several studies have pointed out that the AFQT test
scores in the NLSY may be affected by an individual’s education level at the time of the test. This
problem has been addressed by Hansen et al. (2004), among others. Williams (2018a) suggests a
general solution to this problem in a nonseparable model when pj(Xi, θi) = pj(θi) for a single item
j but not for the rest. Also, see Remark 1 following Theorem 3.2 regarding another way to relax this
assumption.

If θi is not scalar or p̄ is not a monotone function then conditioning on p̄(θi) will not fully control
for ability, particularly if one dimension of ability plays a substantially different role in determining
the outcome, Yi, than it does in performance on the test. In fact, conditioning on the scalar p̄(θi)
when θi is multidimensional can even lead to a larger bias in an estimate of the effect of Xi than
the regression of Yi on Xi (Heckman and Navarro, 2004). When θi is multidimensional a better
approach would be to use scores from multiple tests or to divide the items on a single test into
multiple separate subscores.

Condition ND of Assumption 2.2 requires the test score to be uninformative about the outcome,
Yi, conditional on latent ability and Xi. This condition is violated if the outcome is directly affected
by the test score which might be the case, for example, if the observed test score were used for
differentiated instruction or to determine acceptance into college. This condition is required in
Junker et al. (2012) and Lockwood and McCaffrey (2014) as well.

Lastly, note that Assumption 2.2 allows for the possibility that Mij represents a misreported
performance, under certain assumptions regarding the nature of the misreporting. Measures of child
development sometimes consist of parent or teacher reports of behavior. These reports may not be
accurate, whether intentionally or unintentionally. Let M∗

ij denote an accurate report of the skill or
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behavior. First, conditions LIx and ND could be violated if there is a latent propensity to misreport.
However, if misreporting is independent across items and independent of the outcome, then LIx and
ND will still hold. In that case, there would still be a concern about conditions ER and M’. The item
response functions can be written as

Pr(Mij = 1 | θi, Xi) = δ0j(θi, Xi) + (δ1j(θi, Xi)− δ0j(θi, Xi))Pr(M
∗
ij = 1 | θi, Xi),

where δsj(θi, Xi) = Pr(Mij = 1 | M∗
ij = s, θi, Xi) for s = 0, 1. If, for example, δsj(θi, Xi) = δsj

and the true item response functions, Pr(M∗
ij = 1 | θi, Xi), satisfy conditions ER and M’ then

Assumption 2.2 would still hold in the presence of misreporting.8

3 Semiparametric estimation

Because θi is ordinal, not interval-scaled, a specification for equation (2.2) that restricts the func-
tional form of h – e.g., by assuming that it is linear – is an arbitrary specification choice.9 As demon-
strated in Monte Carlo simulations and the empirical example below, this specification choice can
affect estimates of β1. In this section, I propose a solution to this misspecification problem and de-
velop its asymptotic properties as n, J →∞. The method does not require a parametric specification
of the item response model.

Suppose that equation (2.2) holds for some β1, h(·), and ei where E(ei | Xi, θi) = 0. If θ∗i =

τ(θi) for some strictly monotonic function τ , then there is a function h∗(·) such that Yi = β′1Xi +

h∗(θ∗i ) + ei. Thus the parameter β1 is invariant to monotonic transformations of θi in this model.
The parameter β1 can be estimated using θi or p̄J(θi) or any monotonic transformation of θi. Thus,
if p̄J(θi) were observed directly, β1 could be estimated consistently as n → ∞ for a fixed J using
any of the many well-known semiparametric estimators for the partially linear regression model.

The question remains whether p̄J(θi) can be replaced by M̄iJ . The analysis in Williams (2018a)
shows that E(Yi | Xi = x, M̄iJ = m) ≈ β′1x + h(p̄−1

J (m)) as J → ∞.10 This suggests that β1 can
be consistently estimated as n, J → ∞ using semiparametric regression techniques applied to the
estimating equation

Yi = β′1Xi + g̃(M̄iJ) + ũiJ (3.1)

where g̃(m) = h(p̄−1
J (m)) and ũiJ = ei + h(θi)− g̃(M̄iJ).

One common estimator for the partially linear model is the double-residual method of Robinson

8This analysis regarding misreporting was suggested to me by an anonymous referee.
9See Braun and von Davier (2017) for a different perspective on this issue in the context of large-scale assessments.

10That is, limJ→∞
{
E(Yi | Xi = x, M̄iJ = m)− β′1x− h(p̄−1J (m))

}
= 0.
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(1988). Equation (2.2) implies that E(Yi | θi) = β′1E(Xi | θi) + h(θi). Therefore,

Yi − E(Yi | θi) = β′1(Xi − E(Xi | θi)) + ei

The double residual method is based on the idea that if the conditional expectations E(Yi | θi) and
E(Xi | θi) were known then β1 could be estimated by a least squares regression of the residual
Yi − E(Yi | θi) on the residual Xi − E(Xi | θi).

While the conditional expectation functions hy(θ) := E(Yi | θi = θ) and hx(θ) := E(Xi |
θi = θ) cannot be estimated, it is possible to consistently estimate E(Yi | p̄J(θi) = m) and E(Xi |
p̄J(θi) = m) as n, J → ∞ by a nonparametric regression on M̄iJ . Thus, I propose the following
estimator for β1 in equation (2.2).

β̂1J =

(
n∑
i=1

ŵ(M̄iJ) ˆ̃Xi
ˆ̃X ′i

)−1 n∑
i=1

ŵ(M̄iJ) ˆ̃Xi
ˆ̃Yi (3.2)

where ˆ̃Xi = Xi− ĝx(M̄iJ), ˆ̃Yi = Yi− ĝy(M̄iJ), and ĝy(m) and ĝx(m) = (ĝx1(m), . . . , ĝxK (m))′ are
kernel regression estimators,

ĝy(m) =

∑n
i=1 h

∗−1
y Ky

(
M̄iJ−m
h∗y

)
Yi∑n

i=1 h
∗−1
y Ky

(
M̄iJ−m
h∗y

)
ĝxk(m) =

∑n
i=1 h

∗−1
xk

Kxk

(
M̄iJ−m
h∗xk

)
Xik∑n

i=1 h
∗−1
xk

Kxk

(
M̄iJ−m
h∗xk

)
with bandwidth parameters h∗y and h∗x1 , . . . , h

∗
xK

, and ŵ(m) is a weighting function. This weighting
function must be smooth enough and must be 0 outside a region where ĝy and ĝx are uniformly
well-behaved. The weighting solves two problems. First, the estimators ĝy and ĝx perform poorly
where the distribution of M̄iJ becomes thin. Second, the derivatives of g̃y(m) := hy(p̄

−1
J (m)) and

g̃x(m) := hx(p̄
−1
J (m)) may be unbounded and this would lead to bias even if g̃ = (g̃y, g̃

′
x)
′ were

known. The function ŵ(m) = ψ
(
m−(q̂δ(M̄iJ )+q̂1−δ(M̄iJ ))/2

1
2

(q̂1−δ(M̄iJ )−q̂δ(M̄iJ ))

)
where q̂τ (M̄iJ) is the empirical quantile

function and

ψ(u) =

{
exp

(
1

u2−1

)
|u| ≤ 1

0 |u| > 1
(3.3)

satisfies the required conditions stated in the appendix.
Robinson (1988) and Andrews (1994a), among others, have derived properties of the double-

residual estimator that could be applied if p̄J(θi) were observed without error. However, these re-
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sults do not apply here for several reasons. First, the analysis requires a double asymptotic sequence
where n, J → ∞ and previous results do not immediately apply in this case. Further, because
ĝy(M̄iJ) − hy(θi) is equal to the sum

(
ĝy(M̄iJ)− g̃y(M̄iJ)

)
+
(
g̃y(M̄iJ)− hy(θi)

)
, the proof re-

quires results on supm |ĝy(m) − g̃y(m)| and an argument bounding g̃y(M̄iJ) − hy(θi). Results in
the literature on supm |ĝy(m) − g̃y(m)| require the regressor, in this case M̄iJ , to be continuous or
discrete with a fixed support. And there are no results in the literature pertaining to g̃y(M̄iJ)−hy(θi).
An additional difficulty arises because it is not possible to restrict the support of θi. We are only able
to do this indirectly by restricting the support of M̄iJ .

Under Assumption 2.2 and additional regularity conditions stated in Appendix A, β̂1J is consis-
tent as n, J →∞, as stated in the following theorem.

Theorem 3.1. If equation (2.2) holds with E(ei | Xi, θi) = 0, Assumptions 2.2, A.1, and A.2 are

satisfied, and (Yi, Xi, θi,Mi), i = 1, . . . , n is an i.i.d. sequence of random variables then β̂1J →p β1

as n, J →∞.

Remark 1: This result fails if Xi is not independent of Mi conditional on θi (which implies that

condition ER of Assumption 2.2 does not hold) because in this case the partially linear model of

equation (3.1) is misspecified. Suppose, however, that Xi = (X ′1i, X
′
2i)
′ and, correspondingly, β1 is

split up into β11 and β12. Further, suppose that Pr(Mij = 1 | Xi, θi) = Pr(Mij = 1 | X2i, θi). This

approach could be important, for example, if performance on a test differs between a focal group

for which the test was designed and a reference group that is under study.11

In this case, estimation of β11 can be based off of the partially linear regression model Yi =

β′11X1i + g̃(X2i, M̄iJ) + ũiJ . If X2i is discrete then the asymptotic analysis is nearly identical to that

in the proof of Theorem 3.1 (and Theorem 3.2 below). If X2i is continuous then the
√
n-asymptotic

normality in particular only holds under more restrictive conditions and possibly requires the use of

bias-reducing kernel functions, depending on the dimension of X2i (c.f. Robinson, 1988).

Remark 2: The conditions imposed by Assumptions A.1 and A.2 are fairly straightforward. One

condition that is not standard requires the tails of the distribution of θi to be thin relative to the

tails of the derivatives of the functions p̄J , depending also on how quickly the functions hx and hy
increase in the tails. In the supplementary appendix I show when these conditions are satisfied in

standard parametric IRT models.

Consistency of β̂1J relies primarily on the uniform convergence of M̄iJ to p̄J(θi) as J → ∞
and the uniform convergence of the kernel regression estimators ĝy(m) and ĝx(m) to the functions
g̃y(m) and g̃x(m), uniformly over m = p̄J(θ) as θ varies within a compact subset of its support. The
latter is sufficient because the trimming parameter δ does not have to be taken to 0 in order for β̂1 to
be consistent. The uniform convergence holds under Assumption A.1. Uniform convergence plus

11I thank an anonymous referee for providing this example.
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Assumption 2.2 and the additional regularity conditions in Assumption A.2 are then used to show
consistency of β̂1J . Assumptions A.1 and A.2 do not impose any additional restrictions on the rate
of growth of J beyond the assumption that J grows as nr for some r > 0.

It is possible to derive conditions that are sufficient to ensure
√
n-asymptotic normality of β̂1J as

well. There is an extensive literature that provides sufficient conditions for
√
n-asymptotic normality

for general classes of semiparametric estimators (Andrews, 1994a; Newey, 1994; Chen et al., 2003,
among other). Mammen et al. (2016) derive such a result for a class of models where the covariates
used in the first stage nonparametric estimation are generated. However, none of these results apply
here because they do not allow for a double asymptotic sequence where n, J → ∞. While M̄iJ

can be viewed as a generated covariate – an estimate of the covariate p̄J(θi) – this does not satisfy
the conditions of Mammen et al. (2016), who consider a setup where a “true” covariate r(Zi) is
replaced by a generated covariate r̂(Zi) for some finite-dimensional Zi and a consistent estimate
r̂ of the function r. The following theorem is thus a novel contribution to the literature on the
asymptotic normality of semiparametric estimators.

Theorem 3.2. If equation (2.2) holds with E(ei | Xi, θi) = 0, Assumptions 2.2, A.3, and A.4 are

satisfied, and (Yi, Xi, θi,Mi), i = 1, . . . , n is an i.i.d. sequence of random variables then

√
nV
−1/2

1J Q∗0,J(β̂1J − β1 −BJ)→d N(0, I)

and BJ = O(J−1) where BJ = Q∗−1
0,J B1J ,

B1J = E

(
w(p̄J(θi))η

2
i

∂

∂θ
h(θi)

∂

∂θ
hx(θi)

)
V1J = E(w(p̄J(θi))

2e2
i (Xi − hx(θi))(Xi − hx(θi))′)

Q∗0,J = E (w(p̄J(θi))(Xi − hx(θi))(Xi − hx(θi))′) ,

andw(m) := plimn,J→∞ŵ(m) for eachm. In addition, if V1J → V̄1 andQ∗0,J → Q̄∗0 then
√
n(β̂1J−

β1 − BJ) →d N(0, V̄ ) where V̄ = Q̄∗−1
0 V̄1Q̄

∗−1
0 , and if

√
nBJ → γB̄ then

√
n(β̂1J − β1) →d

N(γB̄, V̄ ).

Remark 3: Consistency requires that ĝ(M̄iJ) converges uniformly to g̃(p̄J(θi)). Asymptotic normal-

ity at the
√
n rate, on the other hand, requires

√
n||ĝ(M̄iJ) − g̃(p̄J(θi))||2 = op(1). If

√
n/J →

γ > 0 then this result does not hold, resulting in an asymptotic bias. After subtracting off the bias

term BJ , the remainder is op(1) provided that ĝ converges uniformly to g̃ at a rate that is faster than

n−1/4 and also faster than
√

log(J)/J . Assumption A.3 states sufficient conditions for this uniform

convergence to hold.

Remark 4: The conditions of Assumption A.3 differ from those of Assumption A.1 in two ways. First,
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the various smoothness conditions and moment conditions are stronger. Second, restrictions on the

rate of convergence of the bandwidth parameters and on the rate of growth of J are more stringent.

In particular, it is assumed that J grows as nr for some r > 1
3
. In other words, the result holds

provided that
√
n/J1+α → γ < ∞ for some α < 1/2. Similarly the conditions of Assumption A.4

are stronger than those of Assumption A.2, in part to ensure that a sufficient stochastic equicontinuity

property is satisfied and in part to ensure that the conditions of a central limit theorem hold.

Remark 5: It follows from the first conclusion of the theorem that β̂1J − β1 − BJ = Op(n
−1/2)

because ||V −1/2
1J Q∗0,J || is bounded from above and bounded away from 0 by assumption.

Remark 6: Both Q∗0,J and V1J can be estimated by their sample analogs, replacing hx(θi) with

ĝx(M̄i), τ0J(θi) with ŵ(M̄iJ), and ei with êi = Yi−β̂′1JXi−ĝ(M̄iJ). It is a straightforward extension

of the results proved in this paper that the resulting asymptotic variance estimator is consistent as

n, J →∞. This consistent estimator can then be used in practice because ||V −1/2
1J Q∗0,J || is bounded.

Remark 7: If
√
n/J → γ > 0 then valid inference would require an estimate of the bias term, BJ .

In Williams (2018b) I develop an estimator for E(η2
i ). Given estimates of the derivatives, ∂

∂θ
h(θi)

and ∂
∂θ
hx(θi), this estimator could be adapted to estimate BJ .

Implementing the estimator β̂1J requires specifying the kernel functions, bandwidths, and trim-
ming parameter. The conditions on the kernel functions stated in the appendix require them to each
be compactly supported and smooth. One choice that satisfies the conditions is the function ψ de-
fined above in (3.3). This kernel was suggested by Andrews (1994a) and is found to work well in
the simulations and empirical application in this paper.

The bandwidth parameters can be chosen using leave-one-out cross validation to choose each
bandwidth, as this method is known to perform well for kernel regression estimators (Hardle and
Marron, 1985) and works well in the simulations below. It can be shown that the bandwidth that
minimizes the MSE of the kernel estimate satisfies the required rate conditions for asymptotical
normality of β̂1J . In the empirical application below results are not sensitive to moderate variation
in the chosen bandwidths.

The theoretical results hold for any choice of δ. I find in the simulations that varying this trim-
ming parameter between 0.05 and 0.2 has little effect on the results. If equation (2.2) is misspecified
because of the additive separability between Xi and θi then the choice of δ could affect results. In
the empirical application, for example, this is a concern if the effect of education varies substan-
tially across the distribution of ability. As more observations are trimmed the estimated coefficient
becomes closer to the effect of education for those at the median.
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3.1 Monte Carlo

The proposed method is consistent as n, J → ∞. To study the finite sample properties of this
proposed estimation strategy, in this section I conduct a Monte Carlo study. I first simulate the
following model

Yi = Xi + θi + ei

Mij = 1(δj(θ
∗
i − αj) ≥ ηij)

where θ∗i = τ(θi) for τ(θ) = θ (model 1), τ(θ) = sign(θ)θ2 (model 2) and τ(θ) = sign(θ)|θ|1/2

(model 3). In addition, I simulate Xi = 1(aθi ≥ exi ) where θi, ei, exi , ηi1, . . . , ηiJ are drawn inde-
pendently from either the standard normal distribution (for the first three variables) or the logistic
distribution (for the remaining J variables).

In each case the 2PL model is correctly specified but in models 2 and 3 the latent ability enters the
outcome equation and the 2PL item response model via different scales. I simulate all three models
for J = 50, 100, and 500 and n = 1000 and 2000. The “difficulty” parameters, αj , are equally
spaced between −1 and 1, and the “discrimination” parameters, δj , are equally spaced between 5

and 10. Simulations are run for three different values of the parameter a, which determines the
strength of the dependence between Xi and θi. The bias and standard deviation of the estimates of
β1 = 1 from each simulation are reported in Table 1.

I report results of three different estimators for these three models. The first two estimators are
infeasible OLS estimators. The estimator labeled “OLSi” is obtained by a regression of Yi on Xi

and p̄J(θ∗i ). The estimator labeled “IRTi” is obtained by a regression of Yi on Xi and θ∗i . I use two
infeasible estimators to illustrate the bias due to misspecification of the scale of the latent variable.
The third estimator, labeled “PLR”, is the semiparametric estimator introduced in this paper – the
double residual regression estimator of the partially linear model based on M̄iJ .

The OLS estimator is inconsistent in all three models, and the IRT estimator is inconsistent in
models 2 and 3. The IRT estimator is consistent as n→∞ in model 1, for any J . The PLR estimator
is consistent in all three models as n, J →∞. The finite sample results in Table 1 demonstrate that
the proposed method eliminates the misspecification bias fairly well when J ≥ 50.

First we see that in model 1 the IRT method is nearly unbiased for large enough J but OLS is
biased even for J = 500. In model 2 we find the opposite – the IRT method exhibits a substantial
bias but the bias of OLS is negligible as J increases. The OLS method performs well apparently
because p̄J(θ2

i ) is approximately linear in θi. In model 3 both OLS and IRT exhibit a bias that does
not diminish as J increases.

In contrast, the PLR method exhibits a bias that decreases with J in each of the three models.
It is apparent, however, that how large J needs to be in order for the bias to be negligible depends
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on the model and the amount of dependence between Xi and θi (determined by the parameter a).
Overall these results demonstrate the superior performance of a method based on the partially linear
regression model when J is sufficiently large.

Table B.1 in the supplementary material reports results for two different feasible estimators for
the same simulations. In this table, OLS is the OLS estimator from a regression of Yi onXi and M̄iJ ,
and IRT is the OLS estimator from a regression of Yi on Xi and θ̂i, where θ̂1, . . . , θ̂n are maximum
likelihood estimates from the 2PL model. It is clear that these estimators are affected by J , in
contrast with the feasible estimators in Table 1. However, general patterns are hard to infer as the
small J bias can be in the opposite direction of the misspecification bias so that in some cases the
overall bias becomes worse as J increases.

4 Returns to schooling

In this section I conduct an empirical exercise to demonstrate the use of the methods proposed in this
paper. I employ a sample of data from the National Longitudinal Study of Youth 1979 to investigate
the effect of education on earnings.

It is well known in the extensive literature on the returns to education that failing to account for
individual ability in a wage regression causes a positive ability bias in estimates of the return to ed-
ucation. Becker (1967), for example, showed how this bias would arise using a model of investment
in human capital where the marginal benefit of education is increasing in ability.12 Several different
approaches to overcoming the endogeneity of schooling have been considered. One approach is to
use earnings data on identical twins to control for genetic and environmental components of ability
that are common between twins who make different education choices (Behrman et al., 1977; Ashen-
felter and Krueger, 1994). Another approach uses instrumental variables. Card (1999) provides an
extensive review of IV estimates of the effect of education on earnings.

A third approach aims to directly control for the unobserved ability that plagues OLS estimates.
While some economists have used IQ scores and performance on achievement tests as proxies for
unobserved ability it has long been recognized that doing so produces methods that suffer from
measurement error bias that tends to bias the effect of education upwards. Thus factor models and
structural equations models have been employed to account for the fact that these tests are noisy
measures of ability. This approach is typified by studies by Griliches and Mason (1972); Cham-
berlain (1977); Blackburn and Neumark (1993). Some more recent work (Carneiro et al., 2003;
Heckman et al., 2006b) incorporates measures of ability while also using exclusion restrictions to
aid in identification. One common criticism of this approach is that these models require normal-

12Heckman et al. (2006a) point out that the problem of ability bias in this context had been recognized by economists
as far back as Noyes (1945).
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izations for identification which are sometimes perceived as arbitrary, in the sense that they are not
motivated by an economic model. My analysis in this section avoids these normalizations using the
methods developed in this paper.

4.1 Data

The data used in this section is from the National Longitudinal Survey of Youth (NLSY79). The
NLSY79 includes information on demographics, educational outcomes, labor market outcomes,
health, and criminal behavior for a panel of individuals over thirty years. The respondents were
first interviewed in 1979 when they were between 14 and 22 years old. The respondents were
reinterviewed each subsequent year until 1994 after which point they were interviewed on a biennial
basis. As discussed below, my analysis is restricted to 30-year olds who reported working at least
35 hours per week on average. Table 2 reports summary statistics for this subsample.

As part of the survey 11, 914 respondents (94% of the respondents) were administered the Armed
Services Vocational Aptitude Battery (ASVAB) which consists of ten subtests. Both raw scores
(M̄iJ ) and scale scores (IRT estimates, θ̂i, from a 3PL model) for each subtest are reported in the data.
The Armed Forces Qualifying Test (AFQT), a composite of the mathematical knowledge, arithmetic
reasoning, paragraph comprehension, and word knowledge subtests, is also reported. These data are
summarized in the second panel of Table 2. The number of items on each test ranges from 15 for
paragraph comprehension to 35 for word knowledge. Recently the individual item responses for the
AFQT subtests have been offered in a new data release.13 However, in this paper I do not use this
item level data.

4.2 Results

I estimate an earnings regression that controls for mathematical ability.14 In the NLSY79 documen-
tation (Ing et al., 2012) it is suggested, based on an analysis of the AFQT data from the NLSY79, that
the mathematical knowledge and arithmetic reasoning items are all explained by a single “mathemat-
ical acuity” factor. Based on these findings they propose pooling the items from these two subtests
of the AFQT. I start by estimating the following regression model

Yi = β0 + β1Si + β′2Xi + β3M̄i + ui

13See Schofield (2014) and Williams (2018b) for analysis of measurement error in these scores based on this newly
released data.

14Using the same sample, in Williams (2018b) I find that verbal ability does not have a statistical significant effect.
Therefore, I exclude it from the analysis here.
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where Yi is the log of individual i’s average weekly wages, Si represents education level, Xi is a
vector of additional controls, including year dummies, and M̄i is the combined score (% answered
correctly) on the mathematical knowledge and arithmetic reasoning items of the AFQT.

Because the return to education varies over the life cycle (see, e.g. Heckman et al., 2006a), I
restrict the sample to individuals who are 30 years old. I estimate the earnings regression separately
for four groups – white males, white females, non-white males, and non-white females. This was
done partly due to a concern that the return to education varies with sex and race but also to address
potential concerns with the validity of condition ER of Assumption 2.2, which states that Pr(Mij =

1 | θi, Xi) = Pr(Mij = 1 | θi). If the data is pooled then the vector Xi should include sex and race
dummies. In that case, we would be required to assume that sex and race do not influence test scores
conditional on ability or, in other words, that the measurement error does not vary with sex or race.
By separating the analysis based on sex and race I avoid this possibly problematic assumption. See
also Remark 1 following Theorem 3.1.

Results are reported in Table 3. Column (1) in each panel reports the coefficient on education
when the test score is omitted completely from the regression. The regression reported in column
(2) uses M̄iJ as a control and column (3) uses θ̂i. Generally, the coefficient estimates in columns (2)
and (3) are similar because θ̂i is roughly linear in M̄iJ except in the tails of the distribution. Both
suggest a lower return to education compared to column (1) once the ability bias is mitigated.

Next I explore the possibility of misspecification bias in these results. To demonstrate the prob-
lem I first searched across various transformations of the composite math score.15 Figure 1 demon-
strates the range of coefficient estimates obtained for the two specifications. The results suggest
that the misspecification bias could potentially be fairly severe. For reference, Figure 2 illustrates
the distribution of the the transformed scores under the transformations that lead to the smallest and
largest coefficient estimates.

I then estimate the partially linear regression model of equation (3.1) as described in Section 3.
The results are reported in column (4) of Table 3. The coefficient on highest grade completed
suggests that each additional grade completed increases earnings by 5.2% for white males. This
estimate is almost 10% higher than the estimate that controls for M̄iJ linearly. On the other hand,
the coefficient on the college dummy in the second specification for white males is overestimated
(by over 10%) when M̄iJ enters linearly compared to the partially linear model. The latter suggests
that college graduation increases earnings by roughly 24% for white males, compared to 21% in
the linear model. Similar results are found for women and non-whites. It is interesting to note that
the direction of the misspecification bias is positive for some specifications for some subsamples
but negative for others. The most dramatic result is that the coefficient on the college dummy for

15I considered transformations that were piecewise linear where the slope was allowed to change at a single “knot”
but the function was restricted to be continuous at this knot and strictly increasing over the support of the test score. I
further restricted the transformations to those which send 0 to 0 and 1 to 1.
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non-white males is negative, though statistically insignificant. In comparison, when using M̄iJ in a
linear regression I find that college increases earnings by 10%, which is statistically significant at a
10% level.

5 Conditioning model

The method proposed in this paper does not require the specification of the distribution of θi | Xi,
often referred to as a conditioning model. Mislevy (1991) and Schofield et al. (2014), among others,
emphasize the importance of the conditioning model. Schofield et al. (2014), e.g., discuss the role of
the conditioning model used to produce institutional plausible values. Plausible values are random
draws from θi | Mi, Zi, for some vector of variables Zi, that are sometimes reported rather than,
or in addition to, an estimate, θ̂i, or a posterior mean, E(θi | Mi, Zi). Schofield et al. (2014) argue
that plausible values can be used when ability plays the role of a covariate only if the model used
to produce the plausible values coincides with the econometrician’s model. When it does not, they
suggest using item level data to estimate a model of the form

Yi | θi, Xi ∼ N(β0 + β′1Xi + β2θi, σ
2)

Pr(Mij = 1 | Xi, θi) = γj +
1− γj

1 + exp(−δj(θi − αj))
θi | Xi ∼ N(α′Xi, τ

2)

where Yi,Mi1, . . . ,MiJ are assumed mutually independent conditional on Xi, θi so that the distri-
bution of Yi,Mi1, . . . ,MiJ | Xi is fully specified up to a finite-dimensional parameter (Schofield,
2015). This model can be estimated using maximum likelihood or MCMC methods.

Schofield et al. (2014) also argue that the bias due to the use of the wrong conditioning model
vanishes as J → ∞. What I have shown in this paper is that, due to similar logic, the conditioning
model is not needed in order to estimate β1 consistently as J → ∞. An important advantage of
the methods due to Mislevy (1991) and Schofield (2015) is their validity when J is small, if the
conditioning model is correctly specified. As seen in the Monte Carlo exercises, when J is small
the performance of the method proposed in this paper deteriorates as the dependence between θi and
Xi grows. The advantages of this method, however, are that it does not rely on any functional form
assumptions and it does not require item level data. The model of this paper is also more general in
that it does not require that θi enters the outcome equation linearly.

While the work of Mislevy (1991) and Schofield et al. (2014) demonstrates the value of the
conditioning model when J is small, other approaches to the measurement error problem do not
require a conditioning model. See Lockwood and McCaffrey (2014) for a comparison of some of
these approaches. The MOM method, for example, uses a parametric IRT model to implement a
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bias correction to improve estimates when J is small. Similarly, Williams (2018b) discusses the
possibility of bias corrections without specifying a parametric IRT model.

6 Conclusion

The use of test scores and other item response assessments as controls for a latent ability or trait
is common. The use of a percent correct test score introduces both misspecification bias and mea-
surement error bias in regression analysis. In some cases the use of institutional plausible values
or the modeling jointly can mitigate these issues. This paper proposes, as an alternative approach,
the estimation of a partially linear model based on the percent correct test score using the double
residual method of Robinson (1988) when the number of items is large.

This partially linear model is invariant to monotonic transformations of latent ability. I show
that the proposed estimator is consistent as n, J → ∞. I also provide conditions under which the
estimator is

√
n-consistent and asymptotically normal. If

√
n/J → 0 then there is no asymptotic

bias and the estimator provides the basis for valid asymptotic inference. I show through Monte Carlo
simulations that, in cases where misspecification is the source of substantial, the proposed method
performs well provided that J is sufficiently large.

The method is easy to implement, relies on weak assumptions, and does not require item level
data. The theoretical results, a novel contribution to the literature on the asymptotic normality of
semiparametric estimators, are of independent interest. Finally, this paper, along with Williams
(2018a) and Williams (2018b), develops a new framework, building on the nonparametric IRT
framework in psychometrics (Douglas, 1997; Junker and Sijtsma, 2001), that can be applied in
many different areas of economics where similar measurement problems arise.
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A Appendix

This appendix states the additional assumptions used to prove consistency and asymptotic normality
of the semiparametric estimator defined in equation (3.2). Proofs of Theorems 3.1 and 3.2 are
provided in Appendix B in the supplementary material.

A.1 Consistency

Let ViJ = (Yi, X
′
i, M̄iJ)′. For a function g = (gy, g

′
x)
′, where gy : [0, 1] → R and gx : [0, 1] →

RK and a function w : [0, 1] → R, let m(ViJ , β1,g, w) = w(M̄iJ)(Yi − gy(M̄iJ) − β′1(Xi −
gx(M̄iJ)))(Xi − gx(M̄iJ)). The estimator defined in (3.2) can equivalently be defined as the value
of the vector β1 that solves the equation

n∑
i=1

m(ViJ , β1, ĝ, ŵ) = 0

where ĝ = (ĝy, ĝ
′
x)
′.

Next, let V ∗i = (Yi, X
′
i, θi) and for a function h = (hy, h

′
x)
′, where hy : R → R and hx : R →

RK , and a function τ : R→ RK , let m∗(V ∗i , β1,h, τ) = τ(θi)(Yi−hy(θi)− β′1(Xi−hx(θi)))(Xi−
hx(θi)). Then define

M∗(β1,h, τ) = E(m∗(V ∗i , β1,h, τ))

M(β1,g, w) = E(m(ViJ , β1,g, w))

M̂n(β1,g, w) = n−1

n∑
i=1

m(ViJ , β1,g, w)

Define hy,0(t) = E(Yi | θi = t) and hx,0(t) = E(Xi | θi = t) and let β10 denote the true value of the
parameter β1. Let g̃y(m) = hy,0(p̄−1

J (m)) and g̃x(m) = hx,0(p̄−1
J (m)). Then let h0 = (hy,0, h

′
x,0)′

and g̃ = (g̃y, g̃
′
x). Also define τ0,J(t) = w0,J(p̄J(t)). Then let X̃i = Xi − hx,0(θi) and Q∗0,J =

Q∗(β10,h0, τ0,J) where
Q∗(β1, h, τ) = E

(
τ(θi)X̃iX̃

′
i

)
.

Last, for any π ∈ [0, 1], and any random variable Z with distribution function FZ , let qπ(Z) :=

inf{q : FZ(q) ≥ π} denote the πth quantile. Then, for a fixed 0 < δ < 1/2, let Θδ denote the
interval [qδ(θi), q1−δ(θi)] and defineMδ = p̄J(Θδ) = {m ∈ [0, 1] : m = p̄J(θ) for some θ ∈ Θδ}.
Though it is suppressed in the notation,Mδ varies with J .

The following conditions imply uniform convergence of ĝy and ĝx by Theorem C.1.

Assumption A.1.
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(a) h0(t) is continuous for all t ∈ R, h0(t) is differentiable at all t ∈ R with derivative Dh0(t)

that is also continuous at all t ∈ R

(b) ∃J0 such that, for each J ≥ J0, p̄J(t) is strictly increasing, continuous and differentiable at all

t ∈ R with derivativeDp̄J(t) such that for each t ∈ R, the family of functions {Dp̄J : J ≥ J0}
is equicontinuous at t. Moreover, for each t ∈ R, infJ≥J0 Dp̄J(t) > 0.

(c) {Jn : n ≥ 1} is a sequence such that Jn = O(nr) and J−1
n = O(n−r) for some r > 0,

hn → 0, nh3
n →∞, and (J−1

n log(Jn))1/2h−1
n = o(1)

(d) The kernel functions Ky, Kx1 , . . . , KxK each satisfy condition (d) of Assumption C.2.

(e) θi has absolutely continuous distribution function Fθ and density fθ such that 0 < fθ(t) ≤ f̄θ.

(f) E|X̃i|3 < ∞, E|ei|3 < ∞, and for any δ > 0, supθ∈Θδ
E(|X̃i|3 | θi = θ) < ∞ and

supθ∈Θδ
E(|ei|3 | θi = θ) <∞.

Consistency of β̂1J is proved using arguments similar to others in the literature on semiparametric
estimators (Chen et al., 2003; Pakes and Pollard, 1989; Andrews, 1994a). In addition to uniform
convergence of ĝy and ĝx, the following additional conditions are used.

Assumption A.2.

(a) |M̂n(β̂1J , ĝ, ŵ)| = infβ1∈B |M̂n(β1, ĝ, ŵ)| where B ⊂ RK is compact and β10 ∈ B.

(b) ∃c, J0 > 0 such that λmin(Q∗0,J) ≥ c for all J ≥ J0

(c) E|Yi| <∞, E|Xi| <∞, E|XiYi| <∞ and E||XiX
′
i|| <∞

(d) (i) The function ŵ(m) is differentiable in m on [0, 1] (with probability 1) with derivative de-

noted ŵ′(m) and has support M̂ such that Pr(M̂ ⊂ Mδ1)→ 1 for some 0 < δ1 < 1/2. (ii)

There exists a function w0,J(m) such that supm∈[0,1] |ŵ(m) − w0,J(m)| → 0. (iii) ∃J0 > 0

such that for J ≥ J0, w0,J is differentiable in m on [0, 1] with derivative denoted w′0,J(m)

and w0,J has support in Mδ2 for some δ2 ≥ δ1. (iv) There exists a constant B < ∞
such that supm∈[0,1] |ŵ(m)| < B, supm∈[0,1] |ŵ′(m)| < B, supm∈[0,1] |w0,J(m)| < B and

supm∈[0,1] |w′0,J(m)| < B.

(e) There is a positive function D̄(t) and a constant J0 > 0 such that |Dh0(t)| ≤ |Dp̄J(t)|D̄(t)

for all t ∈ R and all J ≥ J0, D̄(t) is nonincreasing for t ∈ (−∞, qδ(θi)] and nondecreasing

for t ∈ [q1−δ(θi),∞), and E(D̄(θi)) <∞, E(D̄(θi)|Xi|) <∞, and E(D̄(θi)|Yi|) <∞.
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Conditions (a)-(c) are standard regularity conditions. The conditions on ŵ in (d) are satisfied by
the function in equation (3.3).

Condition (e) can be viewed as a restriction on the relative thickness of the tails of the distribution
of θ. To see this, suppose that |Dh0(t)| ≤ Ch(1 + |t|qh). Then we can consider when the restriction
holds in common parametric models for p̄J . First, in the 3PL model pj(t) = γj + (1 − γj)/(1 +

exp(−δj(t − αj))) it can be shown that |Dp̄J(t)| ≥ Cp exp(−δmaxt) where δmax = maxj δj . Then
let D̄(t) = ChC

−1
p (1 + |t|qh) exp(δmaxt). Therefore, if fθ(t) ≤ Cθ exp(−δθt) for δθ > δmax then

E(D̄(θ)) =
∫
D̄(t)fθ(t)dt ≤

∫
ChC

−1
p Cθ(1 + |t|qh) exp(−(δθ − δmax)t)dt < ∞. The other two

bounds in (e) also hold if E(|Xi| | θi = t) and E(|Yi| | θi = t) are both bounded by a power of t.
Thus if θi is normally distributed then the 3PL model satisfied condition (e). Suppose however

that pj(t) = γj + (1 − γj)Φ(δj(t − αj)) where Φ(·) is the standard normal cdf. This is another
common parametric specification. Then if θi ∼ N(µθ, σ

2
θ) it can be shown that condition (e) is only

satisfied if σ2
θ ·maxj β

2
j < 1.

It is apparent that, more generally, condition (e) requires the tails of the distribution of θi to be
relatively thin. If Dp̄j flattens out more quickly or Dh0 increases more quickly in the tails then the
tails of the distribution of θi have to be thinner.

A.2 Asymptotic normality

Theorem 3.2 requires additional restrictions on the model. The first set of conditions are sufficient
for the uniform convergence of ĝy and ĝx at the rates given by Theorem C.2.

Assumption A.3.

(a) h0(t) is continuous for all t ∈ R and is twice differentiable at all t ∈ R with first and second

derivatives Dh0(t) and D2h0(t) that are both continuous at all t ∈ R

(b) ∃J0 such that, for each J ≥ J0, p̄J(t) is strictly increasing, continuous and twice differentiable

at all t ∈ R with first and second derivatives Dp̄J(t) and D2p̄J(t) such that for each t ∈ R,

the family of functions {Dp̄J : J ≥ J0} is equicontinuous at t and the family of functions

{D2p̄J : J ≥ J0} is equicontinuous at t. Moreover, for each t ∈ R, infJ≥J0 Dp̄J(t) > 0.

(c) θi has absolutely continuous distribution function Fθ and density fθ such that 0 < fθ(t) ≤ f̄θ.

The density function fθ is differentiable with derivative Dfθ that is continuous at all t ∈ R.

(d) E|Yi|3 < ∞, E|Xi|3 < ∞, E|X̃i|3 < ∞, E|ei|3 < ∞, and for any δ > 0, supθ∈Θδ
E(|Yi|3 |

θi = θ) < ∞, supθ∈Θδ
E(|Xi|3 | θi = θ) < ∞, supθ∈Θδ

E(|X̃i|3 | θi = θ) < ∞ and

supθ∈Θδ
E(|ei|3 | θi = θ) <∞.

(e) {Jn : n ≥ 1} is a sequence such that Jn = O(nr) and J−1
n = O(n−r) for some r > 1

3
.
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(f) For each s ∈ N, 2 ≤ s < p, for some p > max{2, 1−r
3r−1
}, the function ωsJ(t) = Js/2E(ηsi |

θi = t) is differentiable with derivative DωsJ(t) such that for each t ∈ R, the family of

functions {ωsJ : J ≥ J0} is equicontinuous at t and the family of functions {DωsJ : J ≥ J0}
is equicontinuous at t.

(g) If r ≤ 1/2, nh
4

1−r−ε
n → 0 for some ε > 0 and nh

2 p−1
r(p+1)−1

+ε

n →∞ for some ε′ > 0; if r > 1/2,

nh8−ε
n → 0 for some ε > 0 and nh

max{3,2 p−1
rp−1/2

}+ε
n →∞ for some ε′ > 0

(h) The kernel functions Ky, Kx1 , . . . , KxK each satisfy condition (g) of Assumption C.3.

Let Zi = (Yi, X
′
i)
′. Recall that hx,0(θi) := E(Xi | θi), hy,0(θi) := E(Yi | θi) and h0(θi) =

(hy,0(θi), hx,0(θi)
′)′ = E(Zi | θi) and X̃i = Xi − hx,0(θi). Also, define Z̃i = Zi − h0(θi) and

V1J = E(τ0J(θi)
2e2
i X̃iX̃

′
i).

Asymptotic normality of β̂1J is implied by uniform convergence of ĝy and ĝx under the following
additional conditions.

Assumption A.4.

(a) |M̂n(β̂1J , ĝ, ŵ)| = infβ1∈B |M̂n(β1, ĝ, ŵ)| where B ⊂ RK is compact and β10 ∈ int(B).

(b) ∃c, J0 > 0 such that λmin(Q∗0,J) ≥ c, λmin(V1J) ≥ c, and inf1≤j,k≤K λmin(Σjk,J) ≥ c for all

J ≥ J0 where Σjk,J = E(τ0,J(θi)
2X̃2

ijX̃
2
ik).

(c) E|Zi|2+δ < ∞, E||XiZ
′
i||2+δ < ∞, and E||X̃iZ̃

′
i||2+δ < ∞ for some δ > 0 and for some

J0 ∈ N, supJ≥J0 ||V1J || <∞.

(d) (i) The function ŵ(m) is differentiable in m on [0, 1] (with probability 1), with derivative de-

noted ŵ′(m) that is continuous everywhere, and ŵ(m) has support M̂ such that Pr(M̂ ⊂
Mδ1)→ 1 for some 0 < δ1 < 1/2. (ii) There exists a functionw0,J(m) such that supm∈[0,1] |ŵ(m)−
w0,J(m)| = op(n

−1/6) + Op((J
−1 log(J))1/2. (iii) ∃J0 > 0 such that for J ≥ J0, w0,J is dif-

ferentiable in m on [0, 1] with derivative denoted w′0,J(m) that is continuous everywhere,

and w0,J has support in Mδ2 for some δ2 ≥ δ1. (iv) There exists a constant B < ∞
such that supm∈[0,1] |ŵ(m)| < B, supm∈[0,1] |ŵ′(m)| < B, supm∈[0,1] |w0,J(m)| < B and

supm∈[0,1] |w′0,J(m)| < B.

(e) There is a positive function D̄(t) and a constant J0 > 0 such that |Dh0(t)| ≤ |Dp̄J(t)|D̄(t),

|D2h0(t)| ≤ |Dp̄J(t)|D̄(t), and |D2p̄J(t)| ≤ |Dp̄J(t)|D̄(t) for all t ∈ R and all J ≥ J0,

D̄(t) is nonincreasing for t ∈ (−∞, qδ(θi) and nondecreasing for t ∈ [q1−δ(θi),∞), and

E(D̄(θi)) <∞, E(D̄(θi)
2) <∞, E(D̄(θi)|Xi|) <∞, and E(D̄(θi)|Yi|) <∞.

(f) There exists a continuous function p̄∞(t) such that p̄J(t)→ p̄∞(t) for each t ∈ R.
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n J

bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd
50 0.04 0.08 0.00 0.08 -0.01 0.09 -0.07 0.10 0.00 0.09 0.01 0.11 -0.24 0.11 0.00 0.10 0.03 0.13
100 0.05 0.08 0.01 0.08 0.00 0.09 -0.07 0.10 0.00 0.09 0.00 0.11 -0.25 0.12 0.00 0.10 0.00 0.13
500 0.04 0.08 0.00 0.08 -0.02 0.10 -0.06 0.10 0.01 0.09 -0.01 0.10 -0.24 0.12 0.00 0.10 -0.01 0.14
50 0.04 0.06 0.00 0.06 0.00 0.07 -0.08 0.07 0.00 0.07 0.01 0.07 -0.25 0.08 0.00 0.07 0.03 0.09
100 0.05 0.05 0.00 0.05 0.00 0.06 -0.07 0.07 0.00 0.07 0.00 0.08 -0.25 0.09 0.00 0.07 0.00 0.10
500 0.04 0.06 0.00 0.06 -0.01 0.07 -0.07 0.07 0.00 0.06 -0.01 0.07 -0.25 0.09 0.00 0.07 -0.02 0.10

bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd
50 0.22 0.07 0.01 0.07 -0.02 0.09 0.15 0.08 -0.10 0.08 -0.02 0.09 -0.01 0.09 -0.29 0.08 -0.02 0.09
100 0.22 0.07 0.01 0.07 -0.03 0.09 0.16 0.08 -0.10 0.08 -0.03 0.09 0.00 0.10 -0.29 0.09 -0.03 0.09
500 0.23 0.07 0.01 0.07 -0.04 0.09 0.16 0.08 -0.11 0.08 -0.04 0.09 0.01 0.09 -0.28 0.09 -0.04 0.10
50 0.22 0.05 0.01 0.05 -0.01 0.06 0.15 0.06 -0.10 0.06 -0.01 0.06 0.00 0.07 -0.28 0.07 -0.01 0.07
100 0.23 0.05 0.01 0.05 -0.01 0.06 0.16 0.06 -0.10 0.06 -0.01 0.06 0.00 0.07 -0.28 0.06 -0.02 0.06
500 0.23 0.05 0.01 0.05 -0.04 0.06 0.16 0.05 -0.10 0.06 -0.03 0.06 0.00 0.07 -0.29 0.07 -0.04 0.07

bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd
50 0.05 0.08 0.20 0.08 0.03 0.10 0.17 0.11 0.54 0.10 0.09 0.13 0.36 0.14 0.78 0.11 0.28 0.22
100 0.05 0.08 0.20 0.08 0.02 0.09 0.19 0.11 0.55 0.10 0.06 0.13 0.39 0.13 0.79 0.10 0.22 0.22
500 0.05 0.08 0.19 0.09 0.00 0.10 0.18 0.11 0.55 0.10 0.02 0.13 0.38 0.13 0.78 0.11 0.07 0.25
50 0.06 0.06 0.20 0.06 0.04 0.07 0.19 0.09 0.55 0.08 0.10 0.10 0.38 0.09 0.78 0.07 0.29 0.14
100 0.06 0.06 0.21 0.06 0.02 0.07 0.19 0.08 0.54 0.07 0.04 0.10 0.39 0.09 0.79 0.08 0.21 0.17
500 0.05 0.06 0.20 0.06 0.00 0.07 0.19 0.08 0.55 0.07 0.02 0.09 0.39 0.09 0.78 0.08 0.07 0.17

1000

2000

Notes: This table reports results of the Monte Carlo exercise described in Section 3.3. All entries are expressed as a fraction of the true parameter value. This table reports results for the coefficient on the 
observed regressor. The IRT scores were obtained using the known values for the item response parameters rather than estimated values.

model 1, a=1 model 1, a=2 model 1, a=4

OLSi IRTi PLR

1000

2000

OLSi IRTi PLR OLSi IRTi PLR

OLSi IRTi PLR

model 3, a=1 model 3, a=2 model 3, a=4

OLSi IRTi PLR OLSi IRTi PLR

1000

2000

Table 1. Monte Carlo results for the partially linear regression model

OLSi IRTi PLR OLSi

model 2, a=1 model 2, a=2 model 2, a=4

OLSi IRTi PLR IRTi PLR



mean std. dev. min. max
Highest grade completed 13.61 2.32 4 20
Avg. weekly wage 816.31 569.52 2.98 14700.00
Hours worked per wk. 45.16 8.76 35 126
Male 0.55 0.50 0 1
White 0.67 0.47 0 1
Urban residence 0.79 0.41 0 1
Married 0.57 0.49 0 1
Children in household 0.94 1.10 0 6
Urban residence, at age 14 0.77 0.42 0 1
Father's highest grade completed 11.50 3.84 0 20
Mother's highest grade completed 11.42 3.00 0 20
AFQT subtests mean std. dev.
   Math Knowledge 0.56 0.25
   Paragraph Comp. 0.74 0.20
   Word Knowledge 0.76 0.19
   Arith. Reasoning 0.61 0.24

Table 2. Descriptive Statistics

Notes: Statistics calculated on the sample of 2,983 30-year-olds who worked at least 35 
hours per week on average. The parents' education is reported at the initial interview in 
1979. The scores reported for the ASVAB subtests are the percent correct scores. Average 
weekly wages are adjusted to 2010 dollars. 

items
25
30
15
35



(1) (2) (3) (4) (1) (2) (3) (4)
0.067 0.048 0.047 0.052 0.099 0.063 0.063 0.055
(0.009) (0.011) (0.011) (0.014) (0.011) (0.012) (0.012) (0.013)
0.318 0.238 0.236 0.209 0.292 0.134 0.134 0.116
(0.043) (0.049) (0.049) (0.053) (0.046) (0.049) (0.049) (0.054)

0.063 0.039 0.035 0.028 0.081 0.071 0.066 0.051
(0.012) (0.013) (0.014) (0.017) (0.013) (0.015) (0.015) (0.016)
0.203 0.100 0.087 -0.026 0.280 0.230 0.223 0.188
(0.058) (0.058) (0.058) (0.062) (0.052) (0.054) (0.052) (0.054)

Table 3.

Notes: All regressions were estimated on the subsample of 30 year olds working at least 35 hours per week on 
average. Each regression includes the following controls: for urban residence,  regional dummies, mother's and 
father's educational level, urban residence at age 14, and year dummies. Column (1) does not control for ability. 
Column (2) controls for ability with the percent correct score. Column (3) uses the published IRT score. Column (4) 
controls nonparametrically for ability as described in Section 3. Robust std. errors are reported in parentheses.
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Figure 1: Estimates of education coefficients controlling for transformations of the test score.
Notes: This figure reports the coefficient on the education variable in a regression of log wages on education, a transformation of

the test score, urban residence, regional dummies, mother’s and father’s education, urban residence at age 14, and year dummies,

where the transformations are varied as described in the text.
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Figure 2: Distribution of transformed test scores
Notes: The solid line is a kernel density estimate of the density of M̄i. The dotted and dashed lines show kernel density estimates

of the density of the transformations of M̄i which maximize or minimize the coefficient on education. The coefficient-maximizing

and minimizing transformations were the same for the two regression specifications.



B Proofs

Proof of Theorem 3.1. I consider a sequence {Jn : n ≥ 1} and show that plimn→∞β̂1Jn = β10.
First, m∗(V ∗i , β1,h) is linear in β1 so

M∗(β̂1Jn ,h0, τ0,Jn)−M∗(β1,h0, τ0,Jn)

= E(τ0,Jn(θi)(Yi − hy,0(θi)− β̂′1Jn(Xi − hx,0(θi)))(Xi − hx,0(θi)))

− E(τ0,Jn(θi)(Yi − hy,0(θi)− β′1(Xi − hx,0(θi)))(Xi − hx,0(θi)))

= −Q∗0,Jn
(
β̂1Jn − β1

)
Since, by assumption, equation (2.2) holds for β10 with E(ei | Xi, θi) = 0, Yi− hy,0(θi)− β′10(Xi−
hx,0(θi)) = ei and

M∗(β10,h0, τ0,J) = E(τ0,J(θi)ei(Xi − hx,0(θi)))

= E(τ0,J(θi)E(ei | Xi, θi)(Xi − hx,0(θi))) = 0

Then, since Q∗0,J is invertible by Assumption A.2(b), β̂1Jn − β10 = −Q∗−1
0,Jn

M∗(β̂1Jn ,h0, τ0,Jn) and
hence for any ε > 0

Pr(|β̂1Jn − β10| > ε) ≤ Pr(||Q∗−1
0,Jn
|| · |M∗(β̂1Jn ,h0, τ0,Jn)| ≥ ε) ≤ Pr(|M∗(β̂1Jn ,h0, τ0,Jn)| ≥ cε)

where the second inequality follows from the bound on ||Q∗−1
0,J || provided by Assumption A.2(b). It

will thus be sufficient to show that Pr(|M∗(β̂1Jn ,h0, τ0,Jn)| ≥ ε)→ 0 as n→∞ for all ε > 0.
By the triangle inequality, |M∗(β̂1Jn ,h0, τ0,Jn)| ≤ |M̂n(β̂1Jn , ĝ, ŵ) − M∗(β̂1Jn ,h0, τ0,Jn)| +

|M̂n(β̂1Jn , ĝ, ŵ)|. I will first show that

|M̂n(β̂1Jn , ĝ, ŵ)−M∗(β̂1Jn ,h0, τ0,Jn)| = op(1) (B.1)

using the following decomposition

|M̂n(β̂1Jn , ĝ, ŵ)−M∗(β̂1Jn ,h0, τ0,Jn)| (B.2)

≤ |M(β̂1Jn , g̃, w0,Jn)−M∗(β̂1Jn ,h0, τ0,Jn)|+ |M(β̂1Jn , g̃, ŵ)−M(β̂1Jn , g̃, w0,Jn)|

+ |M(β̂1Jn , ĝ, ŵ)−M(β̂1Jn , g̃, ŵ)|+ |M̂n(β̂1Jn , ĝ, ŵ)−M(β̂1Jn , ĝ, ŵ)|

Define ξi(β1) = Yi − β′1Xi and γ(β1) = (1, β′1)′ and let ξ̂i = ξi(β̂1J) and γ̂ = γ(β̂1J). Then
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M(β1,g, w) = E(w(M̄iJ)(ξi(β1)− γ(β1)′g(M̄iJ))(Xi − gx(M̄iJ))) so

|M(β̂1Jn , ĝ, ŵ)−M(β̂1Jn , g̃, ŵ)| ≤ |E(ŵ(M̄iJn)ξ̂i(ĝx(M̄iJn)− g̃x(M̄iJn)))| (B.3)

+ |E(ŵ(M̄iJn)γ′(ĝ(M̄iJn)− g̃(M̄iJn))Xi)|

+ |E(ŵ(M̄iJn)γ̂′(ĝ(M̄iJn)ĝx(M̄iJn)− g̃(M̄iJn)g̃x(M̄iJn)))|

≤ C

(
1 + sup

m∈M̂
|ĝ(m)|+ sup

m∈M̂
|g̃(m)|

)
sup
m∈M̂

|ĝ(m)− g̃(m)|

where the second inequality follows for some constant C > 0 by (a), (c), and (d) of Assumption A.2.
Then, using Theorem C.1 and Assumption A.2(d), for any ε > 0,

Pr(|M(β̂1Jn , ĝ, ŵ)−M(β̂1Jn , g̃, ŵ)| ≥ ε)

≤ Pr

(
C

(
1 + sup

m∈Mδ1

|ĝ(m)|+ sup
m∈Mδ1

|g̃(m)|

)
sup

m∈Mδ1

|ĝ(m)− g̃(m)| > ε

)
+
(

1− Pr(M̂ ⊂Mδ1)
)
→ 0

Next,

|M(β̂1Jn , g̃, w0,Jn)−M∗(β̂1Jn ,h0, τ0,Jn)| (B.4)

≤ E
(
|w0,Jn(M̄iJn)|

∣∣∣(ξ̂i − γ̂′g̃(M̄iJn))(Xi − g̃x(M̄iJn))− (ξ̂i − γ̂′g̃(p̄Jn(θi)))(Xi − g̃x(p̄Jn(θi)))
∣∣∣)

+ E(|w0,Jn(M̄iJn)− w0,Jn(p̄Jn(θi))||(ξ̂i − γ̂′g̃(p̄Jn(θi)))(Xi − g̃x(p̄Jn(θi)))|)

By Assumption A.2(a), the first term in equation (B.4) is bounded by a positive constant times

E(|w0,Jn(M̄iJn)(|Xi|+ |Yi|)|g̃(M̄iJn)− g̃(p̄Jn(θi))|)

+ E(|w0,Jn(M̄iJn)|g̃(M̄iJn)||g̃(M̄iJn)− g̃(p̄Jn(θi))|)

+ E(|w0,Jn(M̄iJn)|g̃(p̄Jn(θi))||g̃(M̄iJn)− g̃(p̄Jn(θi))|)

It can be shown that each of these three terms can be bounded by an o(1) sequence using essen-
tially the same argument. First, by conditions (a) and (b) of Assumption A.1, g̃ is continuously
differentiable so |g̃(M̄iJn) − g̃(p̄Jn(θi))| ≤ |Dg̃(p∗i )||ηi| for some p∗i between p̄Jn(θi) and M̄iJn .
Next, by Assumption A.2(e), |Dg̃(m)| ≤ D̄(p̄−1

Jn
(m)) where D̄(·) is nonincreasing on the inter-

val (−∞, qδ2(θi)] and nondecreasing on [q1−δ2(θi),∞). If w0,Jn(M̄iJn) > 0 and θi ∈ Θδ2 then
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p∗i ∈Mδ2 . If w0,Jn(M̄iJn) > 0 and θi /∈ Θδ2 then D̄(p̄−1
Jn

(p∗i )) ≤ D̄(θi). Then

E(|w0,Jn(M̄iJn)(|Xi|+ |Yi|)|g̃(M̄iJn)− g̃(p̄Jn(θi))|)

≤
∫ qδ2 (θi)

−∞
BD̄(t)E(|Xi|+ |Yi| | θi = t)fθ(t)E(|ηi| | θi = t)dt

+

∫
Θδ2

B

(
sup

m∈Mδ2

|Dg̃(m)|

)
E(|Xi|+ |Yi| | θi = t)E(|ηi| | θi = t)fθ(t)dt

+

∫ ∞
q1−δ2 (θi)

BD̄(t)E(|Xi|+ |Yi| | θi = t)E(|ηi| | θi = t)fθ(t)dt

≤ B

J
1/2
n

{
E
(
D̄(θi)(|Xi|+ |Yi|)

)
+

(
sup

m∈Mδ2

|Dg̃(m)|

)
E(|Xi|+ |Yi|)

}
= o(1)

where the second inequality follows since supt∈RE(|ηi| | θi = t) ≤ (supt∈RE(η2
i | θi = t))

1/2 ≤
J
−1/2
n and the final equality follows because supm∈Mδ2

|Dg̃(m)| = O(1) by Theorem C.1 and
E
(
D̄(θi)(|Xi|+ |Yi|)

)
and E(|Xi|+ |Yi|) are both bounded by (c) and (e) of Assumption A.2.

The second term in equation (B.4) is bounded by

BE(1(θi ∈ Θδ2)|ηi||(ξ̂i − γ̂′g̃(p̄Jn(θi)))(Xi − g̃x(p̄Jn(θi)))|)

≤ B

J
1/2
n

E(1(θi ∈ Θδ2)|(ξ̂i − γ̂′g̃(p̄Jn(θi)))(Xi − g̃x(p̄Jn(θi)))|)

≤ B

J
1/2
n

sup
β1∈B,m∈Mδ2

E(|(ξi(β1)− γ(β1)′g̃(m))(Xi − g̃x(m))|) = o(1),

where convergence follows by Assumption A.2(c) and Theorem C.1.
Next, the second term in equation (B.2) can be bounded as follows.

|M(β̂1Jn , g̃, ŵ)−M(β̂1Jn , g̃, w0,Jn)|

≤ E(|ŵ(M̄iJn)− w0,Jn(M̄iJn)||(ξ̂i − γ̂′g̃(M̄iJn))(Xi − g̃x(M̄iJn))|)

≤ C

1 +

(
sup

m∈M̂∪Mδ2

|ĝ(m)|

)2
 sup

m∈M̂∪Mδ2

|ŵ(m)− w0,Jn(m)| = op(1)

where the second inequality follows for some constant C > 0 by conditions (a) and (c) of Assump-
tion A.2 and the final equality follows by using Theorem C.1 and Assumption A.2(d) as above since
δ2 ≥ δ1 implies thatMδ2 ⊆Mδ1 and hence Pr(M̂ ∪Mδ2 ⊂Mδ1) = Pr(M̂ ⊂Mδ1)→ 0.

Next, |M̂n(β̂1Jn , ĝ, ŵ) − M(β̂1Jn , ĝ, ŵ)| = op(1) by applying Theorem B.2. Let Γn = B ×
{(w,g) : w(m) = 0∀m /∈Mδ1 , supm∈Mδ1

|g(m)| < B, supm∈Mδ1
|Dg(m)| < B, supm∈Mδ1

|w(m)| <
B, supm∈Mδ1

|Dw(m)| < B}. Define the metric dn((β′1,g
′, w′), (β1,g, w)) = |β′1−β1|+supm∈Mδ1

|g′(m)−
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g(m)|+ supm∈Mδ1
|w′(m)− w(m)|. Both Γn and dn vary with n becauseMδ1 varies with Jn.

The space Γn is uniformly totally bounded because Θδ1 is compact and because of the conditions
in Assumption A.1(b) controlling {p̄J : J ≥ J0}. Condition (c) in Theorem B.2 is satisfied under
conditions (a) and (c) of Assumption A.1. Condition (b) in the theorem follows from Theorem B.1
since the random variable |w(M̄iJn)(ξi(β1) − γ(β1)′g(M̄iJn))(Xi − gx(M̄iJn))| is bounded by a
random variable that has finite absolute mean when (β1,g, w) ∈ Γn by condition (c) of Assump-
tion A.2. Lastly, Pr((β̂1Jn , ĝ, ŵ) ∈ Γn) ≤ Pr(supm∈Mδ1

|ĝ(m)| < B)+Pr(supm∈Mδ1
|Dĝ(m)| <

B) + Pr(supm/∈Mδ1
|ŵ(m)| = 0, |ŵ(m)| ≤ B, |Dŵ(m)| ≤ B) and each of the first two terms

converges to 1 by Theorem C.1 and the third converges to 1 by Assumption A.2(d).
Thus, I have shown that

|M∗(β̂1Jn ,h0, τ0,Jn)| ≤ op(1) + |M̂n(β̂1Jn , ĝ, ŵ)|

But, |M̂n(β̂1Jn , ĝ, ŵ)| = infβ1∈B |M̂n(β1, ĝ, ŵ)| and

inf
β1∈B
|M̂n(β1, ĝ, ŵ)| ≤ inf

β1∈B

{∣∣∣M̂n(β1, ĝ, ŵ)−M∗(β1,h0, τ0,Jn)
∣∣∣+M∗(β1,h0, τ0,Jn)

}
≤ inf

β1∈B

∣∣∣M̂n(β1, ĝ, ŵ)−M∗(β1,h0, τ0,Jn)
∣∣∣+ inf

β1∈B
|M∗(β1,h0, τ0,Jn)|

≤
∣∣∣M̂n(β̂1Jn , ĝ, ŵ)−M∗(β̂1Jn ,h0, τ0,Jn)

∣∣∣+ inf
β1∈B
|M∗(β1,h0, τ0,Jn)|

= op(1) + inf
β1∈B
|M∗(β1,h0, τ0,Jn)| = op(1),

where the third inequality follows since β̂1Jn ∈ B, the first equality follows from (B.1), and the
second equality follows because β10 ∈ B and M∗(β10,h0, τ0,Jn) = 0.

Therefore,

|M∗(β̂1Jn ,h0, τ0,Jn)| ≤ op(1) + |M̂n(β̂1Jn , ĝ, ŵ)| = op(1)

Theorem 3.2 can be proved through a few lemmas. Let Ẑn(g, w) = n−1
∑n

i=1w(M̄i)(Xi −
gx(M̄i))(Zi−g(M̄i))

′ and Ẑ∗n(h, τ) = n−1
∑n

i=1 τ(θi)(Xi−hx(θi))(Zi−h(θi))
′. Then M̂n(β1,g, w) =

Ẑn(g, w)γ(β1)′ where γ(β1) = (1, β′1)′. I can also define M̂∗
n(β1,h, τ) = Ẑ∗n(h, τ)γ(β1)′ and

Q̂n(g, w) := n−1

n∑
i=1

w(M̄i)(Xi − gx(M̄i))(Xi − gx(M̄i))
′ = Ẑn(g, w)A′

whereA is theK×K+1 matrix [0K×1 IK ]. Then let Q̂n := Q̂n(ĝ, ŵ) and Q̂∗n(h, τ) := Ẑ∗n(h, τ)A′.
As in the proof of Theorem 3.1, I consider a sequence {Jn : n ≥ 1} and then derive the stated
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results as n→∞. I first state the following lemmas, which will then be used to prove Theorem 3.2.

Lemma B.1. Under the assumptions of Theorem 3.2,

(a)
√
n
{
Ẑn(ĝ, ŵ)− Ẑn(g̃, w0,Jn)− E

(
Ẑn(ĝ, ŵ)− Ẑn(g̃, w0,Jn)

)}
→p 0 and

(b)
√
n
{
Ẑn(g̃, w0,Jn)− Ẑ∗n(h0, τ0,Jn)− E

(
Ẑn(g̃, w0,Jn)− Ẑ∗n(h0, τ0,Jn)

)}
→p 0

Lemma B.2. Under the assumptions of Theorem 3.2,
√
n(E

(
M̂n(β10, ĝ, ŵ)

)
−B1Jn) = op(1) and

B1Jn = O(J−1
n ) where B1J = E (τ0J(θi)η

2
iDh(θi)Dhx(θi)).

Lemma B.3. Under the assumptions of Theorem 3.2, Q̂n−Q∗0,Jn = Op(rn) +O
(
(J−1
n log(Jn))1/2

)
where rn = h2

n + log(n)√
nhn

+ log(Jn)p/2

h
(p−1)
n J

p/2
n

.

Proof of Theorem 3.2. First,

√
n
(
M̂n(β10, ĝ, ŵ)−B1Jn

)
(B.5)

=
√
n
{
M̂n(β10, ĝ, ŵ)− M̂∗

n(β10,h0, τ0,Jn)− E
(
M̂n(β10, ĝ, ŵ)− M̂∗

n(β10,h0, τ0,Jn)
)}

+
√
n
(
E
(
M̂n(β10, ĝ, ŵ)

)
−B1Jn

)
+
√
n
(
M̂∗

n(β10,h0, τ0,Jn)− E(M̂∗
n(β10,h0, τ0,Jn))

)
By Lemma B.1, since M̂n(β10,g, w) = Ẑn(g, w)γ′0 and M̂∗

n(β10,h, τ) = Ẑ∗n(h, τ)γ′0, the first term
is op(1). By Lemma B.2 the second term is also op(1). Therefore,

√
n
(
M̂n(β10, ĝ, ŵ)−B1Jn

)
(B.6)

=
√
n
(
M̂∗

n(β10,h0, τ0,Jn)− E(M̂∗
n(β10,h0, τ0,Jn))

)
+ op(1)

Since condition (b) of Assumption A.4 implies that supn ||V
−1/2

1Jn
|| <∞,

√
nV
−1/2

1Jn
(M̂n(β10, ĝ, ŵ)−B1Jn) (B.7)

=
√
nV
−1/2

1Jn

(
M̂∗

n(β10,h0, τ0,Jn)− E(M̂∗
n(β10,h0, τ0,Jn))

)
+ op(1)

→d N(0, I)

where the last line follows from the Lindeberg-Feller central limit theorem for triangular arrays
since condition (c) of Assumption A.4 implies the Lyapounov condition and condition (b) im-
plies that supn ||V

−1/2
1Jn
|| < ∞ where V1Jn = E(τ0Jn(θi)

2e2
i (Xi − h0x(θi))(Xi − h0x(θi))

′) =

V ar(
√
nM̂∗

n(β10,h0, τ0,Jn)).
Next, for any β1, M̂n(β1, ĝ, ŵ) = M̂n(β10, ĝ, ŵ) − Q̂n(β1 − β10). Therefore,

√
nQ̂n(β̂1Jn −

β10) =
√
nM̂n(β10, ĝ, ŵ)−

√
nM̂n(β̂1Jn , ĝ, ŵ). Rather than assuming that M̂n(β̂1Jn , ĝ, ŵ) = 0, the
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following argument shows that
√
nM̂n(β̂1Jn , ĝ, ŵ) = op(1).

The result in (B.7) and condition (b) of Assumption A.4 together imply that M̂n(β10, ĝ, ŵ) −
B1Jn = Op(n

−1/2). Further, since B1Jn = o(1) by Lemma B.2, we have that M̂n(β10, ĝ, ŵ) =

op(1). The, for each β1, define M̃n(β1, ĝ, ŵ) := M̂n(β10, ĝ, ŵ) − Q∗0,Jn(β1 − β10). Let β̄1 =

β10 + Q∗−1
0,Jn

M̂n(β10, ĝ, ŵ) so that M̃n(β̄1, ĝ, ŵ) = 0. Then M̂n(β10, ĝ, ŵ) = op(1), so condition (b)
of Assumption A.4 implies that β̄1− β10 = Q∗−1

0,Jn
M̂n(β10, ĝ, ŵ)→p 0. By condition (a) of Assump-

tion A.4, β10 ∈ int(B), so I can assume that β̄1 ∈ B. Therefore, condition (a) of Assumption A.4
also implies that |M̂n(β̂1Jn , ĝ, ŵ)| = infβ1∈B |M̂n(β1, ĝ, ŵ)| ≤ |M̂n(β̄1, ĝ, ŵ)| + op(n

−1/2). So it
remains to show that

√
nM̂n(β̄1, ĝ, ŵ) = op(1).

But since M̃n(β̄1, ĝ, ŵ) = 0, |M̂n(β̄1, ĝ, ŵ)| ≤ |M̃n(β̄1, ĝ, ŵ)| + |(Q̂n − Q∗0,Jn)(β̄1 − β10)| =

|(Q̂n −Q∗0,Jn)(β̄1 − β10)|. And 0 = M̃n(β̄1, ĝ, ŵ) = M̂n(β10, ĝ, ŵ)−Q∗0,Jn(β̄1 − β10) so that

(Q̂n −Q∗0,Jn)(β̄1 − β10) = (Q̂n −Q∗0,Jn)(β̄1 − β10 −BJn) + (Q̂n −Q∗0,J)BJn

= (Q̂n −Q∗0,Jn)Q∗−1
0,Jn

(M̂n(β10, ĝ, ŵ)−B1Jn) + (Q̂n −Q∗0,J)BJn

I have already shown that (M̂n(β10, ĝ, ŵ) − B1Jn) = Op(n
−1/2) so the first term here is op(n−1/2)

by Lemma B.3. Applying both Lemmas B.2 and B.3, the second term is(
Op

(
h2
n +

log(n)√
nhn

+
log(Jn)p/2

h
(p−1)
n J

p/2
n

)
+O((J−1

n log(Jn))1/2)

)
O(J−1

n ),

which is op(n−1/2) by conditions (e) and (g) of Assumption A.3. Thus I have shown that
√
nM̂n(β̂1Jn , ĝ, ŵ) =

op(1) and therefore
√
nQ̂n(β̂1Jn − β10) =

√
nM̂n(β10, ĝ, ŵ) + op(1).

Next, since BJ = Q∗−1
0,J B1J , supn ||V

−1/2
1Jn
|| < ∞, and, as just shown, (Q̂n − Q∗0,Jn)BJn =

op(n
−1/2),

√
nV
−1/2

1Jn
Q∗0,Jn(β̂1Jn − β10 −BJn)

=
√
nV
−1/2

1Jn
Q̂n(β̂1Jn − β10 −BJn) +

√
nV
−1/2

1Jn
(Q∗0,Jn − Q̂n)(β̂1Jn − β10 −BJn)

=
√
nV
−1/2

1Jn

(
M̂n(β10, ĝ, ŵ)− Q̂nBJn

)
+
√
nV
−1/2

1Jn
(Q∗0,Jn − Q̂n)(β̂1Jn − β10 −BJn)

=
√
nV
−1/2

1Jn
(M̂n(β10, ĝ, ŵ)−B1Jn)

+
(
V
−1/2

1Jn
(Q∗0,Jn − Q̂n)Q∗−1

0,Jn
V

1/2
1Jn

)(√
nV
−1/2

1Jn
Q∗0,Jn(β̂1Jn − β10 −BJn)

)
+ op(1)

Then conditions (b) and (c) of Assumption A.4 and Lemma B.3 imply that(
V
−1/2

1Jn
(Q∗0,Jn − Q̂n)Q∗−1

0,Jn
V

1/2
1Jn

)
= op(1)
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so that

√
nV
−1/2

1Jn
Q∗0,Jn(β̂1Jn − β10 −BJn) =

√
nV
−1/2

1Jn
(M̂n(β10, ĝ, ŵ)−B1Jn)

1− op(1)
+ op(1)→d N(0, I)

Since BJn = O(J−1
n ) it follows from conditions (b) and (c) of Assumption A.4 that β̂1Jn − β10 =

Op(n
−1/2) +O(J−1

n ).
If V1Jn → V̄1 andQ∗0,Jn → Q̄∗0 then

√
n(β̂1Jn−β10−BJn) =

(
Q∗−1

0,Jn
V

1/2
1Jn

)√
nV
−1/2

1Jn
Q∗0,Jn (β̂1Jn

−
β10 − BJn) →d N(0, Q̄∗−1

0 V̄1Q̄
∗−1
0 ). If, in addition,

√
nBJn → γB̄ then

√
n(β̂1Jn

− β10) =
√
n(β̂1Jn

− β10 −BJn) +
√
nBJn →d N(γB̄, V̄ ).

Proof of Lemma B.1. Proof of (a): Let M̄∗ = p̄∞(Θδ) for some 0 < δ < δ1. By conditions (d) and
(f) of Assumption A.4, Pr(M̂ ⊂ M̄∗)→ 1.

Next, Ẑn(g, w) =
∑4

s=1 Ẑns(g, w) where Ẑn1(g, w) = n−1
∑n

i=1w(M̄iJn)XiZ
′
i, Ẑn2(g, w) =

−n−1
∑n

i=1w(M̄iJn)Xig(M̄iJn)′, Ẑn3(g, w) = −n−1
∑n

i=1w(M̄iJn)gx(M̄iJn)Z ′i, and Ẑn4(g, w) =

n−1
∑n

i=1w(M̄iJn)gx(M̄iJn)g(M̄iJn)′.
Then stochastic equicontinuity results of Andrews (1994b) can be applied to each of these four

terms separately. For positive integers r, s let Γ0,r,s be the space of r×smatrix-valued functions, {f :

f(m) = 0∀m /∈ M̄∗, supm∈M̄∗ |f(m)| < B, supm∈M̄∗ |Df(m)| < B}. Then let Γ1 = {xz′} × Γ0,1,1

and let ρ1(f ∗, f) = supnE
(
|(f ∗(M̄iJn)− f(M̄iJn))XiZi|2

)1/2. Then, by Theorems 1-3 of Andrews
(1994b) and condition LIx of Assumption 2.2 and condition (c) of Assumption A.4, for any sequence
δn → 0,

sup
f,f∗∈Γ1,ρ1(f∗,f)<δn

||vn1(f ∗)− vn1(f))|| →p 0

where vn1(f) = n−1/2
∑n

i=1 f(M̄iJn)XiZ
′
i =
√
nẐn1(g, w).

Similarly, let Γ2 = {x} × Γ0,K+1,1 and let ρ2(f∗, f) = supnE
(
|Xi(f

∗(M̄iJn)− f(M̄iJn))′|2
)1/2.

Then, by Theorems 1-3 of Andrews (1994b) and condition LIx of Assumption 2.2 and condition (c)
of Assumption A.4, for any sequence δn → 0,

sup
f ,f∗∈Γ2,ρ2(f∗,f)<δn

||vn2(f∗)− vn2(f))|| →p 0

where vn2(f) = n−1/2
∑n

i=1Xif(M̄iJn)′ and vn2(wg) =
√
nẐn2(g, f).

Third, let Γ3 = {z} × Γ0,K,1 and let ρ3(f∗, f) = supnE
(
|(f∗(M̄iJn)− f(M̄iJn))Z ′i|2

)1/2. Then,
by Theorems 1-3 of Andrews (1994b) and condition LIx of Assumption 2.2 and condition (c) of
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Assumption A.4, for any sequence δn → 0,

sup
f ,f∗∈Γ3,ρ3(f∗,f)<δn

||vn3(f∗)− vn3(f)|| →p 0

where vn3(f) = n−1/2
∑n

i=1 f(M̄iJn)Z ′i and vn3(wgx) =
√
nẐn3(g, f).

Lastly, let Γ4 = Γ0,K,K+1 and let ρ4(f∗, f) = supnE
(
||f∗(M̄iJn)− f(M̄iJn)||2

)1/2. Then, by
Theorems 1-3 of Andrews (1994b) and condition LIx of Assumption 2.2 and condition (c) of As-
sumption A.4, for any sequence δn → 0,

sup
f ,f∗∈Γ4,ρ4(f∗,f)<δn

||vn4(f∗)− vn4(f)|| →p 0

where vn4(f) = n−1/2
∑n

i=1 f(M̄iJn) and vn4(wgxg
′) =
√
nẐn4(g, f).

Then (a) follows since Theorem C.2 implies (1) that Pr(ŵ ∈ Γ0,1,1), Pr(ŵĝ ∈ Γ0,K+1,1),
Pr(ŵĝx ∈ Γ0,K,1) and Pr(ŵĝxĝ′ ∈ Γ0,K,K+1) each converge to 1 and (2) that ρ1(ŵ, w0,Jn) →p 0,
ρ2(ŵĝ, w0,Jng̃)→p 0, ρ3(ŵĝx, w0,Jng̃)→p 0, and ρ4(ŵĝxĝ

′, w0,Jn g̃xg̃
′)→p 0.

Proof of (b): Let

m̂1 =
1

n

n∑
i=1

w(M̄iJn)(Xi − g̃x(M̄iJn))(Zi − g̃(M̄iJn))′ − 1

n

n∑
i=1

w(M̄iJn)(Xi − hx,0(θi))(Zi − h0(θi))
′

− E
(
w(M̄iJn)(Xi − g̃x(M̄iJn))(Zi − g̃(M̄iJn))′ − w(M̄iJn)(Xi − hx,0(θi))(Zi − h0(θi))

′)
and

m̂2 =
1

n

n∑
i=1

w(M̄iJn)(Xi − hx,0(θi))(Zi − h0(θi))
′ − 1

n

n∑
i=1

w(p̄Jn(θi))(Xi − hx,0(θi))(Zi − h0(θi))
′

− E
(
w(M̄iJn)(Xi − hx,0(θi))(Zi − h0(θi))

′ − w(p̄Jn(θi))(Xi − hx,0(θi))(Zi − h0(θi))
′)

Then (b) follows if
√
nm̂1 = op(1) and

√
nm̂2 = op(1).

First, consider V ar(w(M̄iJn)(g̃s(M̄iJn) − h0,s(θi))Vi) for Vi equal to Yi, a component of the
vector Xi, or a component of the vector h0(θi) where g̃s and h0,s represent any component of the
vectors g̃ and h0, respectively. By a Taylor expansion, g̃s(M̄iJn) − h0,s(θi) = Dg̃s(p

∗
i )ηi for some

p∗i between p̄Jn(θi) and M̄iJn so

V ar(w(M̄iJn)(g̃s(M̄iJn)− h0,s(θi))Vi) ≤ E(w(M̄iJn)2Dg̃s(p
∗
i )

2η2
i V

2
i )

Next, E(w(M̄iJn)2Dg̃s(p
∗
i )

2η2
i V

2
i ) =

∫
E(w(M̄iJn)2Dg̃s(p

∗
i )

2η2
i V

2
i | θi = θ)fθ(θ)dθ. For θ ∈

Θδ2 , both p̄Jn(θi) and M̄iJn are inMδ2 (unless w(M̄iJn) = 0) so p∗i ∈Mδ2 and, therefore,
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∫
Θδ2

E(w(M̄iJn)2Dg̃s(p
∗
i )

2η2
i V

2
i | θi = θ)fθ(θ)dθ

≤ B2

(
sup

m∈Mδ2

|Dg̃s(m)|

)2 ∫
Θδ2

E(V 2
i | θi = t)E(η2

i | θi = t)fθ(θ)dθ

≤ 1

Jn
B2

(
sup

m∈Mδ2

|Dg̃s(m)|

)2 ∫
Θδ2

E(V 2
i )fθ(θ)dθ

where I have used (a) the fact that E(V 2
i η

2
i | θi) = E(V 2

i | θi)E(η2
i | θi) for Vi equal to Yi, a

component of the vector Xi, or a component of the vector h0(θi), by Assumption 2.2, (b) the fact
that supθ E(η2

i | θi = θ) ≤ J−1
n , by Lemma C.1, and (c) condition (d) of Assumption A.4 which

implies that the function w(m) is bounded uniformly by B.
Next, by condition (e) of Assumption A.4, |Dg̃s(m)| ≤ D̄(p̄−1

Jn
(m)) where D̄(·) is nonincreasing

on the interval (−∞, qδ2(θi)] and nondecreasing on [q1−δ2(θi),∞). Then∫
Θ\Θδ2

E(w(M̄iJn)2Dg̃s(p
∗
i )

2η2
i V

2
i | θi = θ)fθ(θ)dθ

≤ B2

∫
Θ\Θδ2

D̄(t)2E(V 2
i | θi = θ)E(η2

i | θi = θ)fθ(θ)dθ

≤ 1

Jn
B2E(D̄(θi)

2V 2
i )

so V ar(w(M̄iJn)(g̃s(M̄iJn) − h0,s(θi))Vi) = O(J−1
n ) by condition (e) of Assumption A.4 and The-

orem C.2, and by Chebyschev’s inequality,

n−1/2

n∑
i=1

{
w(M̄iJn)(g̃s(M̄iJn)− h0,s(θi))Vi − E(w(M̄iJn)(g̃s(M̄iJn)− h0,s(θi))Vi)

}
→p 0

Since
√
nm̂1 can be expanded into a sum of (a finite, fixed number of) terms of this form, the desired

result follows.
Next, using the Taylor series approximation w(M̄iJn)− w(p̄Jn(θi)) = w′0,Jn(p∗i )ηi,

V ar((w(M̄iJn)− w(p̄Jn(θi))(Xik − hxk,0(θi))(Zil − h0,l(θi)))

≤ B2E(η2
i (Xik − hxk,0(θi))

2(Zil − h0,l(θi))
2)

≤ 1

Jn
E((Xik − hxk,0(θi))

2(Zil − h0,l(θi))
2) = O(J−1

n )

by condition (f) of Assumption A.3 and conditions (c) and (d) of Assumption A.4 so that by

A-13



Chebyschev’s inequality,
√
nm̂2 = op(1).

Proof of Lemma B.2. First, by Assumption 2.2, E(Yi | Xi, θi,Mi) = β′10Xi + h0(θi), E(Xi |
θi,Mi) = hx,0(θi), and hy,0(θi) := E(Yi | θi) = β′10hx,0(θi) + h0(θi), and therefore,

E
(
M̂n(β10, ĝ, ŵ)

)
= E

(
ŵ(M̄iJn)(Xi − ĝx(M̄iJn))(β′10Xi + h0(θi)− ĝy(M̄iJn)− β′10(Xi − ĝx(M̄iJn)))

)
= E

(
ŵ(M̄iJn)(hx,0(θi)− ĝx(M̄iJn))(h0(θi)− ĝ(M̄iJn))′

)
γ0

= E
(
ŵ(M̄iJn)

{
(hx,0(θi)− g̃x(M̄iJn)) + (g̃x(M̄iJn)− ĝx(M̄iJn))

}
·
{

(h0(θi)− g̃(M̄iJn)) + (g̃(M̄iJn)− ĝ(M̄iJn))
}′)

γ0

By condition (d) of Assumption A.4, I can assume that M̂ ⊂Mδ1 since

Pr(|
√
nE
(
M̂n(β10, ĝ, ŵ)

)
−B1Jn| ≥ ε) ≤ Pr(|

√
nE
(
M̂n(β10, ĝ, ŵ)

)
−B1Jn| ≥ ε,M̂ ⊂Mδ1)

+ (1− Pr(M̂ ⊂Mδ1))

= Pr(|
√
nE
(
M̂n(β10, ĝ, ŵ)

)
−B1Jn| ≥ ε,M̂ ⊂Mδ1) + o(1)

Let m̂1 = E
(
ŵ(M̄iJn)(hx,0(θi)− g̃x(M̄iJn))(h0(θi)− g̃(M̄iJn))′

)
γ0. Then, using a second or-

der taylor expansion of g̃ and g̃x,

m̂1 = E
(
ŵ(M̄iJn)Dg̃x(p̄Jn(θi))Dg̃(p̄Jn(θi))

′η2
i

)
γ0 + E

(
ŵ(M̄iJn)Dg̃x(p̄Jn(θi))D

2g̃(p∗i )
′η3
i

)
γ0

+ E
(
ŵ(M̄iJn)D2g̃x(p

∗∗
i )Dg̃(p̄Jn(θi))

′η3
i

)
γ0 + E

(
ŵ(M̄iJn)D2g̃x(p

∗∗
i )D2g̃(p∗i )

′η4
i

)
γ0

= E
(
ŵ(M̄iJn)Dg̃x(p̄Jn(θi))Dg̃(p̄Jn(θi))

′η2
i

)
γ0 +Op(J

−3/2
n )

where the second equality follows from conditions (d) and (e) of Assumption A.4 by applying the
same argument used above in the proof of Lemma B.1. In addition,

E
(
ŵ(M̄iJn)Dg̃x(p̄Jn(θi))Dg̃(p̄Jn(θi))

′η2
i

)
γ0

= E
(
w0,Jn(p̄Jn(θi))Dg̃x(p̄Jn(θi))Dg̃(p̄Jn(θi))

′η2
i

)
γ0

+ E
(
(w0,Jn(M̄iJn)− w0,Jn(p̄Jn(θi)))Dg̃x(p̄Jn(θi))Dg̃(p̄Jn(θi))

′η2
i

)
γ0

+ E
(
(ŵ(M̄iJn)− w0,Jn(M̄iJn))Dg̃x(p̄Jn(θi))Dg̃(p̄Jn(θi))

′η2
i

)
γ0

= E
(
w0,Jn(p̄Jn(θi))Dg̃x(p̄Jn(θi))Dg̃(p̄Jn(θi))

′η2
i

)
γ0 +Op(J

−3/2
n ) + op(n

−1/2)

by (e) and (f) of Assumption A.3 and (d) of Assumption A.4. Thus
√
n(m̂1 −B1Jn) = op(1).

Next, let m̂2 = E
(
ŵ(M̄iJn)(g̃x(M̄iJn)− ĝx(M̄iJn))(h0(θi)− g̃(M̄iJn))′

)
γ0. Then using a first
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order Taylor approximation of g̃,

√
n|m̂2| ≤

√
n sup
m∈Mδ1

|ĝx(m)− g̃x(m)|E
(
ŵ(M̄iJn)|Dg̃(p∗i )ηi|

)
|γ0|

=
√
nOp

(
(J−1
n log(Jn))1/2

)
sup

m∈Mδ1

|ĝx(m)− g̃x(m)||γ0|

= op(1)

where the first equality is due to Lemma C.1 and the second because Theorem C.2 and conditions (e)
and (g) of Assumption A.3 imply that supm∈Mδ1

|ĝx(m)−g̃x(m)| = Op(rn) = op
(
(Jnn

−1 log(Jn))1/2
)

where rn = h2
n + log(n)√

nhn
+ log(Jn)p/2

h
(p−1)
n J

p/2
n

. By essentially the same argument,

√
n|m̂3| ≤

√
nOp

(
(J−1
n log(Jn))1/2

)
sup

m∈Mδ1

|ĝx(m)− g̃x(m)||γ0| = op(1)

and
√
n|m̂4| ≤

√
n supm∈Mδ1

|ĝx(m)− g̃x(m)|2|γ0| = op(1) where

m̂3 = E
(
ŵ(M̄iJn)(hx,0(θi)− g̃x(M̄iJn))(g̃(M̄iJn)− ĝ(M̄iJn))′

)
γ0

m̂4 = E
(
ŵ(M̄iJn)(g̃x(M̄iJn)− ĝx(M̄iJn))(g̃(M̄iJn)− ĝ(M̄iJn))′

)
γ0

noting that

√
n sup
m∈Mδ1

|ĝx(m)− g̃x(m)|2 =

(
n1/4 sup

m∈Mδ1

|ĝx(m)− g̃x(m)|

)2

=

(
O
(√

n(J−1
n log(Jn))1/2

)
sup

m∈Mδ1

|ĝx(m)− g̃x(m)|

)2

Therefore

√
n
(
E
(
M̂n(β10, ĝ, ŵ)

)
−B1Jn

)
=
√
n(m̂1 −B1Jn) +

√
nm̂2 +

√
nm̂3 +

√
nm̂4

= op(1)

Proof of Lemma B.3. Let A = [0K×1 IK ] and recall that Q̂n(g, w) = Ẑn(g, w)A′ and Q̂∗n(h, τ) =
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Ẑ∗n(h, τ)A′. The desired result follows from the following expansion,

Q̂n −Q∗0,Jn =
{
Ẑn(ĝ, ŵ)− Ẑn(g̃, w0,Jn)− E

(
Ẑn(ĝ, ŵ)− Ẑn(g̃, w0,Jn)

)}
A′+{

Ẑn(g̃, w0,Jn)− Ẑ∗n(h0, τ0,Jn)− E
(
Ẑn(g̃, w0,Jn)− Ẑ∗n(h0, τ0,Jn)

)}
A′

+ Q̂∗n(h0, τ0,Jn)− E
(
Q̂∗n(h0, τ0,Jn)

)
+ E

(
Q̂n(ĝ, ŵ)− Q̂∗n(h0, τ0,Jn)

)
The first two terms are op(n−1/2) by Lemma B.1. The third term is Op(n

−1/2) by application of the
Lindeberg-Feller central limit theorem for triangular arrays since condition (b) of Assumption A.4
implies the relevant Lyapounov conditions.

Lastly,

E
(
Q̂n(ĝ, ŵ)− Q̂∗n(h0, τ0,Jn)

)
= E

(
Q̂n(ĝ, ŵ)− Q̂n(g̃, w0,Jn)

)
+ E

(
Q̂n(g̃, w0,Jn)− Q̂∗n(h0, τ0,Jn)

)
The first term is Op(h

2
n + log(n)√

nhn
+ log(J̃n)p/2

h
(p−1)
n J̃

p/2
n

) by Theorem C.2 and conditions (c) and (d) of Assump-

tion A.4. The second term is O
(
(J−1
n log(Jn))1/2

)
under conditions (d) and (e) of Assumption A.4,

the proof of which is nearly identical to the proof of Lemma B.2.

B.0.1 Some useful weak laws of large numbers

The following is an extension of Khintchin’s WLLN that can be proved using the same methods
employed to prove the well-known Kolmogorov-Feller WLLN.

Theorem B.1. Suppose that for each n, the random variables V1n,, . . . , Vnn are i.i.d. Moreover, sup-

pose that there exists an i.i.d. sequence of random variables V1∞, . . . , Vi∞, . . . such that Pr(|Vin| >
|Vi∞|) = 0 and E|Vi∞| <∞. Then n−1

∑n
i=1 (Vin − E(Vin))→p 0.

Next, I provide a uniform WLLN. Let Vin, 1 ≤ i ≤ n be a triangular array of random variables
where each Vin takes values in a (measurable) space Vn and for each n ≥ 1 and each γ ∈ Γn, h(v, γ)

is a measurable function from Vn to R. The following theorem extends Theorem 3(a) in Andrews
(1992) by explicitly allowing for a triangular array and by allowing the parameter space to vary with
n. Each parameter space Γn is assigned a metric dn(·, ·). Moreover, a uniform version of the totally
bounded assumption in Andrews (1992) is required. The family of parameter spaces, {Γn : n ≥ 1},
is said to be uniformly totally bounded if for all ε > 0 there exists an integer K such that each space
Γn can be covered by no more than K balls of radius ε.

Theorem B.2. If (a) {Γn : n ≥ 1} is a uniformly totally bounded family of parameter spaces,

(b) for any sequence γn ∈ Γn, n−1
∑n

i=1(h(Vin, γn) − E(h(Vin, γn))) →p 0, and (c) |h(Vin, γ
′) −
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h(Vin, γ)| ≤ |f1(Vin)|f2(dn(γ′, γ)) for all γ′, γ ∈ Γn almost surely, for a function f2(d) that con-

verges to 0 as d→ 0 and a function f1 such that supn≥1 n
−1
∑n

i=1 E(|f1(Vin)|) <∞ then

sup
γ∈Γn

∣∣∣∣∣ 1n
n∑
i=1

h(Vin, γ)− E(h(Vin, γ))

∣∣∣∣∣→p 0

The proof of this follows as a variation in the proofs in Andrews (1992).

C Uniform convergence of kernel regression estimators

Consistent estimation of β1 in the partially linear model in Section 3 requires uniform convergence
of estimators of E(Wi | θi) for a random variable Wi. In this section, I provide three such results for
the kernel regression estimator

ĝw(m) =

∑n
i=1 WiK

(
M̄i−m
hn

)
∑n

i=1K
(
M̄i−m
hn

)
where M̄i = J̃−1

∑J̃
j=1 M̃ij . Dependence on J̃ is left implicit in the notation for M̄i for convenience.

Let p̄J̃(θ) = E(M̄i | θi = θ). The results in this section will be applicable for the case where J̃ = J

and M̃ij = Mij for each j but also cases where M̃i := (M̃i1, . . . , M̃iJ̃) is some subset of the full
vector of J items, Mi. A statement of the main results and the sufficient conditions are collected in
the first subsection and proofs are all in a separate section below.

C.1 Assumptions and statement of convergence results

Before stating the main uniform convergence results for ĝw(m) I first state two important results
regarding the convergence of M̄i to p̄J̃(θi) under the following assumption.

Assumption C.1.

(a) The binary random variables, M̃i1, . . . , M̃iJ̃ are mutually independent conditional on θi

(b) ∃J0 such that, for each J̃ ≥ J0, p̄J̃(t) is strictly increasing, continuous and differentiable at all

t ∈ R with derivativeDp̄J̃(t) such that for each t ∈ R, the family of functions {Dp̄J̃ : J̃ ≥ J0}
is equicontinuous at t. Moreover, for each t ∈ R, inf J̃≥J0 Dp̄J̃(t) > 0.

(c) θ has absolutely continuous distribution function Fθ and density fθ that is continuous and

satisfies 0 < fθ(t) ≤ f̄θ for all t ∈ Θ := support(θi).
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Lemma C.1. Under Assumption C.1(a), if the sequence of random vectors M̃i = (M̃i1, . . . , M̃iJ̃),

i = 1, . . . , n is i.i.d. for each J̃ then

(a) for any ε > 0, Pr(|M̄i − p̄J̃(θi)| > ε) ≤ 2 exp(−2J̃ε2)

(b) for any ε > 0, Pr(max1≤i≤n |M̄i − p̄J̃(θi)| > ε) ≤ 2n exp(−2J̃ε2)

(c) for any s > 0, supθ∈ΘE(|M̄i − p̄J̃(θi)|s | θi = θ) = O

((
J̃−1 log J̃

)s/2)
The first two conclusions of this lemma are due to Douglas (2001). Theorem A.2 in Williams

(2017) provides a similar result under a more general mixing condition in place of C.1(a). The proof
is short but instructive.

Proof of Lemma C.1. First, (a) follows from Hoeffding’s inequality since

Pr(|M̄i − p̄J̃(θi)| > ε) =

∫
Pr(|M̄i − p̄J̃(θi)| > ε | θi = θ)fθ(θ)dθ

≤
∫

2 exp(−2J̃ε2)fθ(θ)dθ

This then implies (b) since

Pr( max
1≤i≤n

|M̄i − p̄J̃(θi)| > ε) ≤
n∑
i=1

Pr(|M̄i − p̄J̃(θi)| > ε)

≤ 2n exp(−2J̃ε2)

Let ηi = M̄i − p̄J̃(θi) and define a sequence ρJ̃ =
(
s
4
J̃−1 log(J̃)

)1/2

. Then

sup
θ
E(|M̄i − p̄J̃(θi)|s | θi = θ)

≤ sup
θ
E(|ηi|s1(|ηi|s ≤ ρs

J̃
) | θi = θ) + E(|ηi|s1(|ηi|s > ρs

J̃
) | θi = θ)

≤ ρs
J̃

+ Pr(|ηi|s > ρs
J̃
| θi = θ)

= ρs
J̃

+ Pr(|ηi| > ρJ̃ | θi = θ)

≤ ρs
J̃

+ 2J̃−s/2

where the final line follows from an application of Hoeffding’s inequality and (c) then follows from
the definition of ρJ̃ .

In addition to Assumption C.1, I will impose additional regularity conditions and assumptions on
the rate of convergence of the bandwidth sequence hn and impose properties for the kernel function,
K to derive asymptotic convergence of ĝw. The following conditions are used for the first result.
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Assumption C.2.

(a) Wi ⊥⊥ M̃i | θi

(b) The function hw,0(t) := E(Wi | θi = t) is continuous for all t ∈ R and is differentiable at all

t ∈ R with derivative Dhw,0(t) that is also continuous at all t ∈ R.

(c) E|ei|3 <∞ and for any δ > 0, supθ∈Θδ
E(|ei|3 | θi = θ) <∞ where ei = Wi − hw,0(θi).

(d) K is nonnegative and twice differentiable with continuous first and second derivatives K ′

and K ′′. All three functions K(u), K ′(u), and K ′′(u) are bounded by K̄1(|u| ≤ 1), and

K(u) ≥ K1(|u| ≤ 1/2) for all u ∈ R, for constants 0 < K < K̄ <∞.

By Assumption C.1(b), for each J̃ , the function p̄J̃ has an inverse which is well-defined on its
range, which is an interval in [0, 1]. The inverse p̄−1

J̃
(m) can be extended to [0, 1] by assigning the

values inf Θ and sup Θ for values of m below and above this interval, respectively. Then define
g̃w(m) = hw,0(p̄−1

J̃
(m)).

Also, for a fixed 0 < δ < 1/2, let Θδ denote the interval [qδ(θi), q1−δ(θi)] and define Mδ =

p̄J(Θδ) = {m ∈ [0, 1] : m = p̄J̃(θ) for some θ ∈ Θδ}. Though it is suppressed in the notation,Mδ

varies with J̃ .

Theorem C.1. Under Assumptions C.1 and C.2, if J̃n is a sequence such that J̃n = O(nr) and

J̃−1
n = O(n−r) for some r > 0, hn → 0, nh3

n → ∞, and (J̃−1
n log(J̃n))1/2h−1

n = o(1) then there

exists a constant 0 < B <∞ such that

(a) limJ→∞ supm∈Mδ
|g̃w(m)| ≤ B and limJ→∞ supm∈Mδ

|Dg̃w(m)| ≤ B

(b) limn→∞ Pr(supm∈Mδ
maxi:|M̄i−m|≤h supt∈[0,1] |Dg̃w(tp̄J̃n(θi) + (1 − t)m)| > B) = 0 and

limn→∞ Pr(infm∈Mδ
supt∈[0,1] |Dp̄J̃n(p̄−1

J̃n
(t2hn + (1− t)m))| > B−1) = 0

(c) limn→∞ Pr(supm∈M

∣∣∣(nhn)−1
∑n

i=1K
(
M̄i−m
hn

)∣∣∣ ≤ B−1) = 0

(d) supm∈Mδ
|ĝw(m)− g̃w(m)| = Op(hn) +Op(log(n)(nhn)−1/2)

(e) limn→∞ Pr(supm∈Mδ
|ĝw(m)| ≤ B) = 1

(f) limn→∞ Pr(supm∈Mδ
|Dĝw(m)| ≤ B) = 1

The convergence rate in conclusion (d) of Theorem C.1 is not sufficient for
√
n−convergence

of semiparametric estimators based on ĝ because the convergence rate is not faster than n−1/4 when
r ≤ 1/2, which is the case if

√
n/J̃n → γ > 0. This is because if J̃n = O(nr) for r ≤ 1/2

then the restriction (J̃−1
n log(J̃n))1/2h−1

n = o(1) implies that h−1
n = O(nr/2) = O(n1/4) which

implies that Op(hn) is not op(n−1/4). Fortunately, this convergence rate can be improved under
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the following assumption, which implies the conditions of Assumption C.2 but imposes several
additional smoothness restrictions.

Assumption C.3.

(a) Wi ⊥⊥ M̃i | θi.

(b) The function hw,0(t) := E(Wi | θi = t) is continuous for all t ∈ R and is twice differentiable

at all t ∈ R with first and second derivativesDhw,0(t) andD2hw,0(t) that are both continuous

at all t ∈ R.

(c) ∃J0 such that, for each J̃ ≥ J0, p̄J̃(t) is twice differentiable at all t ∈ R with second derivative

D2p̄J̃(t) such that for each t ∈ R, the family of functions {D2p̄J̃ : J̃ ≥ J0} is equicontinuous

at t.

(d) the density function fθ is differentiable with derivative Dfθ(t) that is continuous at all t ∈ R.

(e) For each s ∈ N, 2 ≤ s < p, the function ωsJ̃(t) = J̃s/2E(ηsi | θi = t) is differentiable

with derivative DωsJ̃(t) such that for each t ∈ R, the family of functions {ωsJ̃ : J̃ ≥ J0} is

equicontinuous at t and the family of functions {DωsJ̃ : J̃ ≥ J0} is equicontinuous at t.

(f) E|ei|q < ∞, E|Wi|q < ∞ and for any δ > 0, supθ∈Θδ
E(|ei|q | θi = θ) < ∞ and

supθ∈Θδ
E(|Wi|q | θi = θ) <∞ for some q ≥ 3, where ei = Wi − hw(θi).

(g) K is nonnegative and p+ 1-times differentiable and, for 0 ≤ s ≤ p+ 1, K(s)(u) is continuous

for all u ∈ R, where K(s)(u) := ds

dus
K(u). Also, for each 0 ≤ s ≤ p + 1, |K(s)(u)| ≤

K̄1(|u| ≤ 1) and K(u) ≥ K1(|u| ≤ 1/2) for all u ∈ R, for constants 0 < K < K̄ <∞.

Theorem C.2. Under Assumptions C.1 and C.3, if J̃n is a sequence such that J̃n = O(nr) and

J̃−1
n = O(n−r) for some r > 0, hn → 0, nh3

n →∞, (J̃−1
n log(J̃n))1/2h−1

n = o(1) then

sup
m∈Mδ

|ĝw(m)− g̃w(m)| = Op

(
h2
n +

log(n)√
nhn

+
log(J̃n)p/2

h
(p−1)
n J̃

p/2
n

)
.

C.2 Proofs

The proof of Theorems C.1 and C.2 both rely on the following lemma. This result is proved below
using arguments that are standard in the literature (see, e.g., Hansen (2008)).

Lemma C.2. Let ∆V sa
n (m) = (nhn)−1

∑n
i=1 Viη

s
iκ
(
M̄a
iJ p̄J (θi)

(1−a)−m
hn

)
for an i.i.d random vector

{Vi}ni=1, nonnegative integer s, and a ∈ {0, 1}. If (Vi, θi, M̃i), i = 1, . . . , n is an i.i.d. random

sequence, Assumption C.1 holds and, in addition,
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(a) Vi ⊥⊥ M̃i | θi, E|Vi|q < ∞ for some q > 2, and for any δ > 0, supθ∈Θδ
E(|Vi|q | θi = θ) <

∞.

(b) |κ(u)| ≤ B1(|u| ≤ 1) and κ has a derivative, κ′ which is continuous and is also bounded by

B.

(c) J̃n is a sequence such that J̃n = O(nr) and J̃−1
n = O(n−r) for some r > 0, hn → 0,

h−1
n = O(nα) for some α > 0 such that q(1− α) > 2, and (J̃−1

n log(J̃n))1/2h−1
n = o(1).

then

sup
m∈Mδ

|∆V sa
n (m)− E(∆V sa

n (m))| = Op

(
log(n)(nhn)−1/2

(
J̃−1
n log(J̃n)

)s/2)
Moreover, if ∆V s

n (m) = (nhn)−1
∑n

i=1 Vi
∫ M̄i

p̄J (θi)
(M̄i − t)s−1κ

(
t−m
hn

)
dt then

sup
m∈Mδ

|∆V s
n (m)− E(∆V s

n (m))| = Op

(
log(n)(nhn)−1/2

(
J̃−1
n log(J̃n)

)s/2)
I now provide the proofs of the three main uniform convergence results. Where it is not necessary

for understanding the notation is simplified by omitting the n subscript on J̃n and the J̃ subscript on
p̄J̃ .

Proof of Theorem C.1. (a) supm∈Mδ
|g̃w(m)| ≤ supθ∈Θδ

|h0(θ)|, which is bounded since Θδ is
compact and h0 is continuous, by Assumption C.2(a). The function g̃w(m) = h0(p̄−1(m)) is
differentiable with Dg̃w(m) = Dh0(p̄−1(m)) 1

Dp̄(p̄−1(m))
since Dp̄ > 0 by Assumption C.2(b).

Then

sup
m∈Mδ

|Dg̃w(m)| ≤
supθ∈Θδ

|Dh0(θ)|
infθ∈Θδ |Dp̄(θ)|

By Assumption C.2(a), the function h0 is continuous and hence bounded on the compact set
Θδ and by Assumption C.2(b) infθ∈Θδ Dp̄(θ) is bounded away from 0 as J̃ →∞.

(b) Let the bound found in the proof of (a) above beB/2. If supm∈Mδ
maxi:|M̄i−m|≤hn supt∈[0,1]Dg̃w(tp̄(θi)+

(1 − t)m) > B then there must be m∗ ∈ Mδ such that M̄i −m∗| ≤ hn and |Dg̃w(tp̄(θi) +

(1− t)m∗)−Dg̃w(m∗)| > B/2. By (a) and (b) of Assumption C.2, this implies that there is
a constant ε > 0 such that |m∗ − p̄(θi)| > ε. The result follows by Lemma C.1 and Assump-
tion C.2(c) and Assumption C.2(f) since

Pr( sup
m∈Mδ

max
i:|M̄i−m|≤hn

|m− p̄(θi)| > ε) ≤ Pr( max
1≤i≤n

|M̄i − p̄(θi)| ≥ ε− hn) = o(1)

The second part follows from Assumption C.2(b) by a similar argument.
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(c) First, define f̂1(m) = (nhn)−1
∑n

i=1K
(
M̄i−m
hn

)
. Then

|f̂1(m)| ≥ K(nhn)−1

n∑
i=1

1(|M̄i −m| ≤ hn/2)

≥ K(nhn)−1

n∑
i=1

1(|p̄(θi)−m| ≤ hn/4)−K(nhn)−1

n∑
i=1

1(|M̄i − p̄(θi)| ≤ hn/4)

≥ K(nhn)−1

n∑
i=1

1(|p̄(θi)−m| ≤ hn/4)− o(1)

where the second inequality follows from Assumption C.2(d) and the last line follows from
Lemma C.1 and Assumptions C.2(c) and (f) since J̃h2

n = J̃ρ2
n(hn/ρn)2 →∞.

Then, 1(|p̄(θi)−m| ≤ hn/4) = 1(p̄(θi) ≤ m+ hn/4)− 1(p̄(θi) ≤ m− hn/4) so

inf
m∈Mδ

K(nhn)−1

n∑
i=1

1(|p̄(θi)−m| ≤ hn/4)

≥ K(hn)−1 inf
m∈Mδ

Pr(|p̄(θi)−m| ≤ hn/4)

− 2K(hn)−1 sup
s∈[0,1]

(
n−1

n∑
i=1

1(p̄(θi) ≤ s)− Pr(p̄(θi) ≤ s)

)

The second term is Op(h
−1
n n−1/2) by the DKW inequality (see, e.g., p. 268 of Van der Vaart,

2000) applied to sups∗∈R (n−1
∑n

i=1 1(θi ≤ s∗)− Pr(θi ≤ s∗))

Finally, for n large enough, either m + hn/4 ∈ Mδ or m − hn/4 ∈ Mδ, or both, so I will
assume wlog that m+ hn/4 ∈Mδ. Then Pr(p̄(θi) ≤ m+ hn/4) = Fθ(p̄

−1(m+ hn/4)) and
Pr(p̄(θi) ≤ m) = Fθ(p̄

−1(m)), so

K(hn)−1 inf
m∈Mδ

Pr(|p̄(θi)−m| ≤ hn/4) ≥ K(hn)−1 inf
m∈Mδ

Pr(p̄(θi) ≤ m+ hn/4)− Pr(p̄(θi) ≤ m)

= K(hn)−1 inf
m∈Mδ

(
Fθ(p̄

−1(m+ hn/4))− Fθ(p̄−1(m))
)

≥ K infθ∈Θδ fθ(θ)

supm∈Mδ
Dp̄(p̄−1(m))

which is bounded away from 0 by Assumptions C.2(b) and (e).

(d) First, Wi = hw,0(θi) + ei = g̃w(p̄(θi)) + ei = g̃w(m) + g̃w(p̄(θi)) − g̃w(m) + ei where
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Assumption C.1(c) implies that E(ei | θi,Mi) = 0. Then

|ĝw(m)− g̃w(m)| ≤
(nhn)−1

∣∣∣∑n
i=1(Wi − g̃w(m))K

(
M̄i−m
hn

)∣∣∣
|f̂1(m)|

≤ |f̂1(m)|−1

∣∣∣∣∣(nhn)−1

n∑
i=1

(g̃w(p̄(θi))− g̃w(m))K

(
M̄i −m
hn

)
+ (nhn)−1

n∑
i=1

eiK

(
M̄i −m
hn

)∣∣∣∣∣
Next,∣∣∣∣∣(nhn)−1

n∑
i=1

(g̃w(p̄(θi))− g̃w(m))K

(
M̄i −m
hn

)∣∣∣∣∣
≤

(
sup
m∈M̂δ

|Dg̃w(m)|

)
(nhn)−1

n∑
i=1

(
|M̄i − p̄(θi)|+ |M̄i −m|

)
K

(
M̄i −m
hn

)

≤

(
sup
m∈M̂δ

|Dg̃w(m)|

){
(nhn)−1K̄

n∑
i=1

1(|M̄i − p̄(θi)| > ρn) + (1 + h−1
n ρn)n−1

n∑
i=1

1(|M̄i −m| ≤ hn)

}

where M̂δ = {tp̄(θi) + (1− t)m : m ∈Mδ, t ∈ [0, 1], |M̄i −m| < hn}. The probability that
the first term in braces is nonzero is bounded by Pr(max1≤i≤n |M̄i − p̄(θi)| > ρn) which is
o(n−1/2) by Assumption C.2(c), Assumption C.2(f), and Lemma C.1. Next, (1+h−1

n ρn) = 1+

o(1), n−1
∑n

i=1 1(|M̄i−m| ≤ hn) = n−1
∑n

i=1 1(M̄i ≤ m+hn)−n−1
∑n

i=1 1(M̄i ≥ m−hn),
and

n−1

n∑
i=1

1(M̄i ≤ m+ hn) ≤ n−1

n∑
i=1

1(p̄(θi) ≤ m+ 2hn) + n−1

n∑
i=1

1(|M̄i − p̄(θi)| > hn)

The second term is op(n−1/2), again by Lemma C.1, since hn ≥ ρn, at least for n sufficiently
large. Therefore,

sup
m∈Mδ

n−1

n∑
i=1

1(|M̄i −m| ≤ hn) ≤ sup
m∈Mδ

|Pr(p̄(θi) ≤ m+ 2hn)− Pr(p̄(θi) ≤ m− 2hn)|

+2 sup
s∈[0,1]

∣∣∣∣∣n−1

n∑
i=1

1(p̄(θi) ≤ s)− E(1(p̄(θi) ≤ s)

∣∣∣∣∣+ op(n
−1/2)

Here, the first term is bounded by 8hf̄θ/(infm∈M̂δ
inft∈[0,1] Dp̄(p̄

−1(tm+ (1− t)2hn)) by (b)
and (e) of Assumption C.2. The second term is op(n−1/2) (see proof of (c) above).
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Next, since E
(
eiK

(
M̄i−m
hn

))
= 0, it remains to show that

|∆n(m)− E(∆n(m))| = Op(rn)

where ∆n(m) = (nhn)−1
∑n

i=1 eiK
(
M̄i−m
hn

)
and rn = log(n)(nhn)−1/2. This follows by

applying Lemma C.2 with κ = K, Vi = ei, s = 0, and a = 1. Conditions (a)-(c) of the lemma
are implied by Assumption C.2.

(e) This follows from parts (a) and (d) of the lemma, which have already been proved.

(f) First,

Dĝw(m) =
Df̂w(m)

f̂1(m)
− Df̂1(m)f̂w(m)

(f̂1(m))2

where f̂w(m) = (nhn)−1
∑n

i=1WiK
(
M̄i−m
hn

)
. Using Wi = g̃w(m) + g̃w(p̄(θi))− g̃w(m) + ei,

and abbreviating Ki = K
(
M̄i−m
hn

)
and K ′i = K ′

(
M̄i−m
hn

)
, the same arguments used in the

proof of (d) can be used to show that

|Dĝw(m)| ≤ (|f̂1(m)|)−2

{
Op(1)

∣∣∣∣∣(nh2
n)−1

n∑
i=1

eiK
′
i

∣∣∣∣∣+Op(1)

∣∣∣∣∣(nh2
n)−1

n∑
i=1

eiKi

∣∣∣∣∣+Op(1)

}

Then, since E(eiKi) = E(eiK
′
i) = 0, Lemma C.2 can be applied to conclude that

sup
m

∣∣∣∣∣(nh2
n)−1

n∑
i=1

eiKi

∣∣∣∣∣ = h−1
n sup

m

∣∣∣∣∣(nhn)−1

n∑
i=1

eiKi

∣∣∣∣∣ = Op((nh
3
n)−1/2)

sup
m

∣∣∣∣∣(nh2
n)−1

n∑
i=1

eiK
′
i

∣∣∣∣∣ = h−1
n sup

m

∣∣∣∣∣(nhn)−1

n∑
i=1

eiK
′
i

∣∣∣∣∣ = Op((nh
3
n)−1/2)

Conditions (a)-(c) of the lemma are implied Assumption C.2. This then implies by part(c) that
supm |Dĝw(m)| = Op(1) +Op((nh

3
n)−1/2). The desired result follows since nh3

n →∞.
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Proof of Theorem C.2. First, define ẽi = Wi − g̃w(m) = g̃w(p̄(θi))− g̃w(m) + ei. Then

|ĝw(m)− g̃w(m)| ≤ |f̂1(m)|−1

∣∣∣∣∣(nhn)−1

n∑
i=1

ẽiK

(
M̄i −m

h

)∣∣∣∣∣
≤ |f̂1(m)|−1

∣∣∣∣∣(nhn)−1

n∑
i=1

ẽiK

(
p̄(θi)−m

h

)∣∣∣∣∣
+ |f̂1(m)|−1

∣∣∣∣∣(nhn)−1

n∑
i=1

ẽi

{
K

(
M̄i −m

h

)
−K

(
p̄(θi)−m

h

)}∣∣∣∣∣
where f̂1(m) = (nhn)−1

∑n
i=1K

(
M̄i−m
hn

)
. Since Assumption C.3 implies Assumption C.2, supm∈Mδ

|f̂1(m)|−1 =

Op(1) follows from conclusion (c) of Theorem C.1.
Under condition (f) of Assumption C.3, by a pth order Taylor series expansion, K(u′)−K(u) =∑p−1
s=1

(u′−u)s

s!
K(s)(u) +

∫ u′
u

(u′−t)p−1

p!
K(p)(t)dt. Therefore,

|ĝw(m)− g̃w(m)| ≤ |f̂1(m)|−1

p−1∑
s=0

(nhn)−1

∣∣∣∣∣
n∑
i=1

ẽi
ηsi
hsns!

K(s)

(
p̄(θi)−m

h

)∣∣∣∣∣
+ |f̂1(m)|−1(nhn)−1

∣∣∣∣∣
n∑
i=1

ẽi

∫ M̄i

p̄(θi)

(M̄i − t)p−1

p!hpn
K(p)

(
t−m
h

)
dt

∣∣∣∣∣
Since ẽi = Wi − g̃w(m), for each 0 ≤ s < p,

sup
m∈Mδ

(nhn)−1

∣∣∣∣∣
n∑
i=1

ẽi
ηsi
hsns!

K(s)

(
p̄(θi)−m

h

)∣∣∣∣∣ (C.1)

≤ sup
m∈Mδ

(nhn)−1

∣∣∣∣∣
n∑
i=1

{
Wi

ηsi
hsns!

K(s)

(
p̄(θi)−m

h

)
− E

(
Wi

ηsi
hsns!

K(s)

(
p̄(θi)−m

h

))}∣∣∣∣∣
+

(
sup
m∈Mδ

|g̃w(m)|
)

sup
m∈Mδ

(nhn)−1

∣∣∣∣∣
n∑
i=1

{
ηsi
hsns!

K(s)

(
p̄(θi)−m

h

)
− E

(
ηsi
hsns!

K(s)

(
p̄(θi)−m

h

))}∣∣∣∣∣
+ (nhn)−1

∣∣∣∣∣
n∑
i=1

E

(
ẽi

ηsi
hsns!

K(s)

(
p̄(θi)−m

h

))∣∣∣∣∣
By application of Lemma C.2, first with Vi = Wi and second with Vi = 1, each of the first two terms
is Op

(
log(J̃n)s/2h−sn J̃

−s/2
n

log(n)√
nhn

)
. In addition, I show below that

sup
m∈Mδ

(nhn)−1

∣∣∣∣∣
n∑
i=1

E

(
ẽi

ηsi
hsns!

K(s)

(
p̄(θi)−m

h

))∣∣∣∣∣ = O
(
h−(s−2)
n J̃−s/2n

)
(C.2)
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Next, since E(ei | M̄i, θi) = E(ei | θi) = 0,

(nhn)−1

∣∣∣∣∣
n∑
i=1

ẽi

∫ M̄i

p̄(θi)

(M̄i − t)p−1

p!hpn
K(p)

(
t−m
h

)
dt

∣∣∣∣∣
≤ (nhn)−1

∣∣∣∣∣
n∑
i=1

{
ei

∫ M̄i

p̄(θi)

(M̄i − t)p−1

p!hpn
K(p)

(
t−m
h

)
dt− E

(
ei

∫ M̄i

p̄(θi)

(M̄i − t)p−1

p!hpn
K(p)

(
t−m
h

)
dt

)}∣∣∣∣∣
+ (nhn)−1

∣∣∣∣∣
n∑
i=1

(g̃w(p̄(θi))− g̃w(m))

∫ M̄i

p̄(θi)

(M̄i − t)p−1

p!hpn
K(p)

(
t−m
h

)
dt

∣∣∣∣∣
Another application of Lemma C.2, this time with Vi = ei, implies that the first term isOp

(
log(J̃)p/2h−pn J̃−p/2 log(n)√

nhn

)
.

Lastly, I will show that

sup
m∈Mδ

(nhn)−1

∣∣∣∣∣
n∑
i=1

(g̃w(p̄(θi))− g̃w(m))

∫ M̄i

p̄(θi)

(M̄i − t)p−1

p!hpn
K(p)

(
t−m
hn

)
dt

∣∣∣∣∣ = Op

(
log(J̃n)p/2h−pn J̃−p/2n hn

)
(C.3)

Then, since h−sn J̃
−s/2
n = o(log(J̃n)s/2h−sn J̃

−s/2
n ) and log(J̃n)s/2h−sn J̃

−s/2
n = O(1) for any s ≥ 0,

sup
m∈Mδ

|ĝw(m)− g̃w(m)| = Op(1)Op

(
log(J̃n)p/2h−(p−1)

n J̃−p/2n + log(J̃n)p/2h−pn J̃−p/2n

log(n)√
nhn

+

p−1∑
s=0

{
h−(s−2)
n J̃−s/2n + log(J̃n)s/2h−sn J̃−s/2n

log(n)√
nhn

})

= Op

(
h2
n +

log(n)√
nhn

+ log(J̃n)p/2h−(p−1)
n J̃−p/2n

)

Thus, it remains to prove (C.2) and (C.3). First, E
(
eiη

s
iK

(s)
(
p̄(θi)−m
hn

))
= 0 so

E

(
ẽiη

s
iK

(s)

(
p̄(θi)−m

hn

))
= E

(
(g̃w(p̄(θi))− g̃w(m))ηsiK

(s)

(
p̄(θi)−m

hn

))
= J̃−s/2n

∫
(g̃w(p̄(θ))− g̃w(m))ω̃sJ̃(p̄(θ))K(s)

(
p̄(θ)−m

hn

)
f̃θi(p̄(θ))dθ

= J̃−s/2n hn

∫
(g̃w(m+ uhn)− g̃w(m))ω̃sJ̃(m+ uhn)K(s) (u) f̃θi(m+ uhn)dθ

where ωsJ̃(θ) = J̃s/2E(ηsi | θi = θ), ω̃sJ̃(m) = ωsJ̃(p̄−1(m)), and f̃θi(m) = fθ(p̄−1(m))
Dp̄(p̄−1(m)

and the last
line follows from the substitution u = (p̄(θ)−m)/hn.

Next, use three Taylor approximations: g̃w(m∗)−g̃w(m) = Dg̃w(m)(m∗−m)+1
2
D2g̃w(ma)(m

∗−
m)2, ωsJ̃(p̄−1(m∗)) = ωsJ̃(p̄−1(m))+Dω̃sJ̃(mb)(m

∗−m), and f̃θi(m
∗) = f̃θi(m)+Df̃θi(mc)(m

∗−

A-26



m) where ma,mb and mc are all between m and m∗. Take n sufficiently large so that m and
m∗ = m+ uhn are both contained inMδ/2. Then, by the previous equation

J̃s/2n sup
m∈Mδ

∣∣∣∣E (ẽiηsiK(s)

(
p̄(θi)−m

h

))∣∣∣∣
= h2

n sup
m∈Mδ

∣∣∣∣∣Dg̃w(m)ω̃sJ̃(m)
f̃θi(m)

Dp̄(p̄−1(m))

∣∣∣∣∣
∫
uK(s) (u) du+O(h3

n)

Therefore,

sup
m∈Mδ

(nhn)−1

∣∣∣∣∣
n∑
i=1

E

(
ẽi

ηsi
hsns!

K(s)

(
p̄(θi)−m

h

))∣∣∣∣∣
≤ J̃−s/2n

1

hs+1
n s!

O(h3
n) = O

(
h−(s−2)
n J̃−s/2n

)

To prove (C.2), first observe that I can take |ηi| ≤ δn :=
(
c0J̃

−1
n log(J̃n)

)1/2

for each i, where
2rc0 > 1, by Lemma C.1. Also, take n sufficiently large so that δn ≤ hn. Then

sup
m∈Mδ

(nhn)−1

∣∣∣∣∣
n∑
i=1

(g̃w(p̄(θi))− g̃w(m))

∫ M̄i

p̄(θi)

(M̄i − t)p−1

p!hpn
K(p)

(
t−m
hn

)
dt

∣∣∣∣∣
≤

(
sup

m∈Mδ/2

|Dg̃w(m)|

)
sup
m∈Mδ

K̄δpn
p!hpn

n−1

n∑
i=1

1(|p̄(θi)−m| ≤ hn)

= Op

(
δpn
hp−1
n

)
The final line follows because, as argued in the proof of Theorem C.1 using the DKW inequality
(see, e.g., p. 268 of Van der Vaart, 2000) and the fact that Pr(|p̄(θi)−m| ≤ hn) = O(hn),

n−1

n∑
i=1

1(|p̄(θi)−m| ≤ hn) = O(hn) +Op(n
−1/2) = Op(hn)

Now a proof of Lemma C.2 is now provided.

Proof of Lemma C.2. Let rn := log(n)(nhn)−1/2
(
J̃−1
n log(J̃n)

)s/2
. Define bn such that bqn =

n log(n) and let V̄in = Vi1(|Vi| ≤ bn) and η̄in = ηi1(|ηi| ≤ ρn) where ρn = (r−1J̃−1
n log(J̃n))1/2 for
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r given by condition (c) of the lemma. Let

∆V sa,r
n (m) = (nhn)−1

n∑
i=1

Viη
s
iκ

(
M̄a

i p̄(θi)
(1−a) −m
hn

)
− (nhn)−1

n∑
i=1

V̄inη̄
s
inκ

(
M̄a

i p̄(θi)
(1−a) −m
hn

)
= (nhn)−1

n∑
i=1

Vi1(|Vi| > bn)ηsiκ

(
M̄a

i p̄(θi)
(1−a) −m
hn

)
+ (nhn)−1

n∑
i=1

V̄inη
s
i1(|ηi| > ρn)κ

(
M̄a

i p̄(θi)
(1−a) −m
hn

)
= ∆V sa,r1

n (m) + ∆V sa,r2
n (m)

Then |∆V sa
n (m)− E(∆V sa

n (m))| ≤ |∆̄V sa
n (m)|+ |∆V sa,r

n (m)|+ |E(∆V sa,r
n (m))| where

∆̄V sa
n (m) = (nhn)−1

n∑
i=1

(
V̄inη̄

s
inκ

(
M̄a

i p̄(θi)
(1−a) −m
hn

)
− E

(
V̄inη̄

s
inκ

(
M̄a

i p̄(θi)
(1−a) −m
hn

)))

First, for any t > 0,

Pr( sup
m∈M

|∆V sa,r
n (m)| > trn) ≤ Pr( max

1≤i≤n
|Vi| > bn) + Pr( max

1≤i≤n
|ηi| > ρn)

Then Pr(max1≤i≤n |Vi| > bn) ≤ nPr(|Vi| > bn) ≤ E(|Vi|q)
log(n)

→ 0, where the last inequality
follows from Markov’s inequality since n

bqn
= 1

log(n)
, and the limit holds by condition (a). And

Pr(max1≤i≤n |ηi| > ρn) = o(n−1) by Lemma C.1 and condition (c).
Second, by condition (b)

sup
m∈Mδ

|E(∆V sa,r1
n (m))| ≤ h−1

n sup
m∈Mδ

E
(
|Vi|1(|Vi| > bn)|ηi|s1(|M̄a

i p̄(θi)
(1−a) −m| ≤ hn|)

)
≤ h−1

n sup
m∈Mδ

E (|Vi|1(|Vi| > bn)|ηi|s1(|p̄(θi)−m| ≤ 2hn|)) (C.4)

+
{
h−1
n E

(
|Vi|1(|Vi| > bn)|ηi|s1(|M̄i − p̄(θi)| > hn|)

)}a
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For n sufficiently large, the first term satisfies

h−1
n sup

m∈Mδ

E (|Vi|1(|Vi| > bn)|ηi|s1(|p̄(θi)−m| ≤ 2hn|))

≤ h−1
n

(
sup
θ∈Θδ/2

|E(|ηi|s | θi = θ)|

)
E (|Vi|1(|Vi| > bn)1(|p̄(θi)−m| ≤ 2hn))

≤ h−1
n

1

bq−1
n

(
sup
θ∈Θδ/2

|E(|ηi|s | θi = θ)|

)
E (|Vi|q1(|p̄(θi)−m| ≤ 2hn))

≤ h−1
n

1

bq−1
n

(
sup
θ∈Θδ/2

E(|ηi|s | θi = θ)

)(
sup
θ∈Θδ/2

E(|Vi|q | θi = θ)

)
Pr(|p̄(θi)−m| ≤ 2hn)

where the first inequality is by the conditional independence between Vi and M̄i conditional on
θi under condition (a), the second is because |Vi| > bn implies that |Vi| ≤ bq−1

n |Vi|q, and the
third is valid under condition (a). This term is Op(b

−(q−1)
n J

−s/2
n ) since Pr(|p̄(θi) − m| ≤ 2hn) ≤

Pr
(
|θi − p̄−1(m)| ≤ 2hn/ infθ∈Θδ/2 Dp̄(θ)

)
≤ 4 supθ∈Θ fθ(θ)hn/ infθ∈Θδ/2 Dp̄(θ) and because supθ∈Θδ/2

E(|ηi|s |

θi = θ) = O

((
J̃−1
n log J̃n

)s/2)
by Lemma C.1. Lastly, it is easy to verify that q > 2 implies that

Op

(
b
−(q−1)
n

(
J̃−1 log J̃

)s/2)
= op(rn) because bq−1

n > n(q−1)/q > n1/2.

For any t > 0, the second term in (C.4), for sufficiently large n, satisfies

h−1
n E

(
|Vi|1(|Vi| > bn)|ηi|s1(|M̄i − p̄(θi)| > hn|)

)
≤ h−1

n E
(
|Vi|1(|Vi| > bn)|ηi|s1(|M̄i − p̄(θi)| > tρn|)

)
≤ h−1

n E
(
|Vi|2

)1/2
Pr(|M̄i − p̄(θi)| > tρn|)1/2

≤ 2h−1
n E

(
|Vi|2

)1/2
exp(−Jnt2ρ2

n)

where the first inequality follows from condition (c) in the statement of the lemma, the second
follows from the Cauchy-Schwarz inequality and the fact that |ηi| ≤ 1, the third follows from
Hoeffding’s inequality. This term is op(rn) if t2 > 1+α+sr

2
because E (|Vi|2) < ∞ by condition (a),

and condition (d) of Assumption C.1 and condition (c) imply that h−1
n r−1

n = O(n
1
2

(1+α+sr) log(n)−1)

for some α > 0 and exp(−2Jnt
2ρ2
n) ≤ J−a

−1t2

n = o(n−t
2
).

By Lemma C.1, condition (d) of Assumption C.1 and condition (c), and applying the same
argument based on Hoeffding’s inequality,

sup
m∈Mδ

|E(∆V sa,r2
n (m))| ≤ h−1

n sup
m∈Mδ

E
(
|V̄in|ηsi1(|ηi| > ρn)|1(|M̄a

i p̄(θi)
(1−a) −m| ≤ hn|)

)
≤ h−1

n bnPr(|ηi| > ρn) = o(rn)
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Third, since |V̄inη̄sinK
(
M̄a
i p̄(θi)

(1−a)−m
hn

)
| ≤ bnρ

s
nB, I can apply Bernstein’s inequality:

Pr(|∆̄V sa
n (m)| > trn) ≤ exp

− (trnnhn)2

2nV ar
(
V̄inη̄sinK

(
M̄a
i p̄(θi)

(1−a)−m
hn

))
+ 4

3
tBbnρsnrnnhn


≤ exp

(
− t2 log(n)

c1 + c2tbn log(n)(nhn)−1/2

)
(C.5)

where the second inequality follows for some positive constants c1, c2 because (rnnhn)2 = O
(

log(n)nhn

(
J̃−1
n log(J̃n)

)s)
and

V ar

(
V̄inη̄

s
inK

(
M̄a

i p̄(θi)
(1−a) −m
hn

))
≤ E

(
V̄ 2
inη̄

2s
in1(|p̄(θi)−m| ≤ 2hn)

)
+ E

(
V̄ 2
inη̄

2s
in1(|M̄i − p̄(θi)| ≥ hn)

)
≤ ρ2s

n

(
sup
θ∈Θδ/2

E(V 2
i | θi = θ)

)
Pr(|p̄(θi)−m| ≤ 2hn) + b2

nPr
(
|M̄i − p̄(θi)| ≥ hn

)
= O

((
J̃−1
n log(J̃n)

)s
hn

)
where the last line follows because, using the same argument based on Hoeffding’s inequality
b2
nPr

(
|M̄i − p̄(θi)| ≥ hn

)
= o(n−C) for any C > 0.

Next, partitionMδ intoN ≤ 1
rnhn

intervals of width rnhn centered at {mj}Nj=1. Since
∣∣∣K (M̄a

i p̄(θi)
(1−a)−mj
hn

)
−K

(
M̄a
i p̄(θi)

(1−a)−m
hn

)∣∣∣ ≤
|mj−m|
hn

1(|M̄a
i p̄(θi)

(1−a)−mj| ≤ 2hn), for n sufficiently large, following an argument due to Hansen
(2008),

Pr( sup
m∈Mδ

|∆̄V sa
n (m)| > 3trn) ≤ NPr(|∆̄V sa

n (m)| > trn) +NPr(|∆̄∗V san (m)| > trn)

provided that E|∆̄∗V san (m)| is bounded, where

∆̄∗V san (m) = (nhn)−1

n∑
i=1

(
V̄inη̄

s
in1(|M̄a

i p̄(θi)
(1−a) −m| ≤ hn)

−E
(
V̄inη̄

s
in1(|M̄a

i p̄(θi)
(1−a) −m| ≤ hn)

))
The same arguments used above can be repeated to show that E|∆̄∗V san (m)| is bounded uniformly
over m ∈ Mδ and that the bound on Pr(|∆̄V sa

n (m)| > trn) derived in equation (C.5) applies to
NPr(|∆̄∗V san (m)| > trn) as well. Therefore,for t large enough

Pr( sup
m∈Mδ

|∆̄∗V san (m)| > 3trn) ≤ 2N exp

(
− t2 log(n)

c1 + c2tbn log(n)(nhn)−1/2

)
→ 0
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where convergence follows because nq−1
(nhn)−1/2 = O(n−( 1

2
− 1
q
−α

2
)), which implies that bn log(n)(nhn)−1/2 =

o(1) if 1
2
− 1

q
− α

2
> 0. The latter follows from the restriction in condition (c) that q(1− α) > 2.

The result for ∆V s
n (m) follows by essentially the same argument. Let

∆V s,r
n (m) = ∆V s

n (m)− (nhn)−1

n∑
i=1

V̄in1(|ηi| ≤ ρn)

∫ M̄i

p̄(θi)

(M̄i − t)s−1κ

(
t−m
hn

)
dt

= (nhn)−1

n∑
i=1

Vi1(|Vi| > bn)

∫ M̄i

p̄(θi)

(M̄i − t)s−1κ

(
t−m
hn

)
dt

+ (nhn)−1

n∑
i=1

V̄in1(|ηi| > ρn)

∫ M̄i

p̄(θi)

(M̄i − t)s−1κ

(
t−m
hn

)
dt

= ∆V s,r1
n (m) + ∆V s,r2

n (m)

Then |∆V s
n (m)− E(∆V s

n (m))| ≤ |∆̄V s
n (m)|+ |∆V s,r

n (m)|+ |E(∆V s,r
n (m))| where

∆̄V s
n (m) = (nhn)−1

n∑
i=1

(
V̄in1(|ηi| ≤ ρn)

∫ M̄i

p̄(θi)

(M̄i − t)s−1κ

(
t−m
hn

)
dt

−E

(
V̄in1(|ηi| ≤ ρn)

∫ M̄i

p̄(θi)

(M̄i − t)s−1κ

(
t−m
hn

)
dt

))

First, for any t > 0,

Pr( sup
m∈Mδ

|∆V s,r
n (m)| > trn) ≤ Pr( max

1≤i≤n
|Vi| > bn) + Pr( max

1≤i≤n
|ηi| > ρn)→ 0

Second, by condition (b),∣∣∣∣∣
∫ M̄i

p̄(θi)

(M̄i − t)s−1κ

(
t−m
hn

)
dt

∣∣∣∣∣ ≤ |ηi|s−1B

∫ M̄i

p̄(θi)

1(|t−m| ≤ hn)dt

which implies that

sup
m∈Mδ

|E(∆V sa,r1
n (m))| ≤ h−1

n sup
m∈Mδ

E (|Vi|1(|Vi| > bn)|ηi|s1(|p̄(θi)−m| ≤ 2hn|))

+ h−1
n E

(
|Vi|1(|Vi| > bn)|ηi|s−11(|M̄i − p̄(θi)| > hn|)

)
Both terms are o(rn), as argued above. And by Lemma C.1 and conditions (b) and (c)

sup
m∈Mδ

|E(∆V sa,r2
n (m))| ≤ h−1

n bnPr(|ηi| > ρn) = o(rn)
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Third, ∣∣∣∣∣V̄in1(|ηi| ≤ ρn)

∫ M̄i

p̄(θi)

(M̄i − t)s−1κ

(
t−m
hn

)
dt

∣∣∣∣∣ ≤ bnρ
s
nB

and

V ar

(
V̄in1(|ηi| ≤ ρn)

∫ M̄i

p̄(θi)

(M̄i − t)s−1κ

(
t−m
hn

)
dt

)
≤ E

(
V̄ 2
inη̄

2s
inB

21(|p̄(θi)−m| ≤ 2hn)
)

+ E
(
V̄ 2
inη̄

2s
inB

21(|M̄i − p̄(θi)| ≥ hn)
)

= O
((
J̃−1
n log(J̃n)

)s
hn

)
so Bernstein’s inequality can be applied as above to obtain

Pr(|∆̄V s
n (m)| > trn) ≤ exp

(
− t2 log(n)

c1 + c2tbn log(n)(nhn)−1/2

)
The desired result follows by partitioning Mδ into N ≤ 1

rnhn
intervals of width rnhn centered at

{mj}Nj=1, as above, and combining results since, for n large enough that rn < 1,∣∣∣∣∣
∫ M̄i

p̄(θi)

(M̄i − t)s−1κ

(
t−m
hn

)
dt−

∫ M̄i

p̄(θi)

(M̄i − t)s−1κ

(
t−mj

hn

)
dt

∣∣∣∣∣
≤
∫ M̄i

p̄(θi)

|M̄i − t|s−1

∣∣∣∣κ(t−mhn
)
− κ

(
t−mj

hn

)∣∣∣∣ dt
≤
∫ M̄i

p̄(θi)

|M̄i − t|s−1 |m−mj|
hn

1(|t−mj| ≤ 2hn)dt
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n J

bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd
50 0.05 0.08 0.22 0.08 -0.01 0.09 -0.04 0.10 0.44 0.09 0.01 0.11 -0.19 0.11 0.54 0.09 0.03 0.13
100 0.06 0.08 0.22 0.08 0.00 0.09 -0.05 0.10 0.40 0.08 0.00 0.11 -0.23 0.12 0.53 0.10 0.00 0.13
500 0.04 0.08 0.00 0.08 -0.02 0.10 -0.06 0.10 0.00 0.10 -0.01 0.10 -0.24 0.12 -0.01 0.11 -0.01 0.14
50 0.05 0.06 0.21 0.06 0.00 0.07 -0.05 0.07 0.40 0.06 0.01 0.07 -0.20 0.08 0.55 0.06 0.03 0.09
100 0.05 0.05 0.21 0.05 0.00 0.06 -0.06 0.07 0.44 0.06 0.00 0.08 -0.22 0.09 0.00 0.08 0.00 0.10
500 0.05 0.06 0.00 0.06 -0.01 0.07 -0.07 0.07 0.00 0.07 -0.01 0.07 -0.24 0.09 -0.01 0.08 -0.02 0.10

bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd
50 0.23 0.07 0.09 0.07 -0.02 0.09 0.17 0.08 0.05 0.08 -0.02 0.09 0.01 0.09 0.04 0.08 -0.02 0.09
100 0.23 0.07 0.05 0.07 -0.03 0.09 0.17 0.08 0.03 0.08 -0.03 0.09 0.01 0.10 -0.01 0.09 -0.03 0.09
500 0.23 0.07 0.03 0.07 -0.04 0.09 0.16 0.08 0.02 0.08 -0.04 0.09 0.01 0.09 -0.03 0.09 -0.04 0.10
50 0.23 0.05 0.09 0.05 -0.01 0.06 0.16 0.06 0.07 0.06 -0.01 0.06 0.02 0.07 0.05 0.06 -0.01 0.07
100 0.23 0.05 0.05 0.05 -0.01 0.06 0.16 0.06 0.05 0.05 -0.01 0.06 0.01 0.07 0.04 0.06 -0.02 0.06
500 0.23 0.05 0.03 0.05 -0.04 0.06 0.16 0.05 0.02 0.05 -0.03 0.06 0.01 0.07 -0.04 0.07 -0.04 0.07

bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd
50 0.07 0.08 0.48 0.09 0.03 0.10 0.21 0.11 0.99 0.09 0.09 0.13 0.40 0.13 0.59 0.13 0.28 0.22
100 0.06 0.08 0.53 0.08 0.02 0.09 0.21 0.11 0.96 0.09 0.06 0.13 0.41 0.13 0.60 0.13 0.22 0.22
500 0.05 0.08 0.11 0.09 0.00 0.10 0.19 0.11 0.38 0.11 0.02 0.13 0.38 0.13 0.64 0.12 0.07 0.25
50 0.08 0.06 0.51 0.06 0.04 0.07 0.23 0.09 0.98 0.07 0.10 0.10 0.42 0.09 1.20 0.06 0.29 0.14
100 0.07 0.06 0.10 0.06 0.02 0.07 0.20 0.08 0.93 0.07 0.04 0.10 0.41 0.09 0.60 0.09 0.21 0.17
500 0.05 0.06 0.11 0.06 0.00 0.07 0.19 0.08 0.38 0.08 0.02 0.09 0.39 0.09 0.63 0.09 0.07 0.17

Notes: This table reports results of the Monte Carlo exercise described in Section 3.3. All entries are expressed as a fraction of the true parameter value. This table reports results for the coefficient on the 
observed regressor. The IRT scores were obtained using the known values for the item response parameters rather than estimated values.

OLS IRT PLR OLS IRT PLR OLS IRT PLR

1000

2000

1000

2000

model 3, a=1 model 3, a=2 model 3, a=4

OLS IRT PLR OLS IRT PLR OLS IRT PLR

1000

2000

model 2, a=1 model 2, a=2 model 2, a=4

Table B.1. Monte Carlo results for the partially linear regression model
model 1, a=1 model 1, a=2 model 1, a=4

OLS IRT PLR OLS IRT PLR OLS IRT PLR
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