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Abstract

Variation in covariates can be used to nonparametrically identify a discrete choice model with

a lagged dependent variable and discrete unobserved heterogeneity (Kasahara and Shimotsu,

2009; Browning and Carro, 2014). In some cases the number of support points of the unobserved

heterogeneity distribution is restricted only by the number of points of support in the distribution

of the covariates. This paper provides conditions under which these models can be identified

with continuous heterogeneity using continuous variation in the covariates. The identification

argument is related to that of Honore and Lewbel (2002) in that it requires a “special regressor”

(Lewbel, 1998), but it does not assume an additively separable latent index. Identification

requires only 3 time periods, neither stationarity nor time homogeneity is imposed, and the

distribution of the initial condition is not restricted apart from conditions required for the

special regressor. I demonstrate the result through a Monte Carlo simulation.
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1 Introduction

This paper provides conditions under which a discrete choice panel model with a lagged depen-

dent variable and continuously distributed individual effects is nonparametrically identified using

continuous variation in the covariates. I use a spectral decomposition due to Hu and Schennach

(2008) to show nonparametric identification with as few as three periods of data. The argument

does not require specification of the distribution of the initial condition. It also allows for general

time-dependence of the model parameters. The main identifying assumption is that there is a

continuously distributed time-varying covariate, Vit, with large support, that satisfies a conditional

independence condition. This assumption is similar to the assumption of the existence of a special

regressor in Honore and Lewbel (2002).1 The argument also relies on a version of the complete-

ness condition, which has received increased attention recently (Canay et al., 2013; Andrews, 2017;

D’Haultfoeuille, 2011; Hu and Shiu, 2018).

Consider the following dynamic binary choice model. For each time period t = 1, . . . , T and

each observational unit i = 1, . . . , n,

Yit = 1(δt + γtYi(t−1) + β′tWit + αtFi ≥ Uit), (1.1)

where Uit are independent errors, Fi is the unobserved individual effect, and Wit is a vector of

observed covariates. This model incorporates both state dependence and unobserved heterogeneity

as sources of serial dependence in outcomes. It is well known that maximum likelihood estimation

of this model, with the distribution of Uit specified but the individual effects treated as parame-

ters to be estimated, suffers from inconsistency due to the incidental parameters problem unless

T →∞ (Neyman and Scott, 1948).2 In some cases, the individual effects can be removed by con-

ditioning on a sufficient statistic if the coefficients in (1.1) are time-invariant and the errors are all

logistically distributed (Rasch, 1961; Andersen, 1970; Honore and Kyriazidou, 2000; Aguirregabiria

et al., 2018). This approach has been extended to a semiparametric model, where neither the

1Chen et al. (2018b), who label this an “excluded” covariate, show that the conditional independence assumption
in Honore and Lewbel (2002) implicitly requires serial independence of the special regressor. They also provide a
different identification argument under an alternative assumption regarding the special regressor that allows for serial
dependence. The assumption used in this paper is neither stronger nor weaker than either of these but it does allow
for serial dependence.

2Chen et al. (2018a), Boneva and Linton (2017) and Ando and Bai (2018) study estimation of this model with
large T .
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distribution of Fi nor the distribution of Uit is specified, though stationarity of the unobservables,

time-invariance of the coefficients, and linearity of the latent index are maintained (Manski, 1987;

Honore and Kyriazidou, 2000; Honore and Lewbel, 2002). An alternative is a random effects speci-

fication where the distribution of Fi conditional on covariates, in addition to the distribution of Uit,

is specified (up to a finite-dimensional parameter). As shown by Heckman (1981a), specification of

the random effects distribution is complicated by the presence of the lagged dependent variable.

Models based on equation (1.1) have been employed in a vast empirical literature. Among

many other applications, such models have been used to study labor force participation (Heckman,

1981b,a; Hyslop, 1999), brand switching behavior (Chintagunta et al., 2001), health (Contoyannis

et al., 2004), educational attainment (Cameron and Heckman, 1998, 2001), stock market partici-

pation (Alessie et al., 2004), and firm behavior (Roberts and Tybout, 1997; Kerr et al., 2014). The

main result of this paper shows that the conditional choice probabilities, Pr(Yit = yt | Yi(t−1) =

yt−1,Wit = wt, Fi = f), the initial condition distribution, Pr(Yi1 = y1 | Wi1 = w1, . . . ,WiT =

wT , Fi = f), and the density of the individual effect, fFi|Wi1=w1,...,WiT =wT
, are identified. While the

result applies to the model of equation (1.1) as a special case, it does not require a linear latent

index and also allows for general discrete-valued outcomes.

Let Wit = (Vit, X
′
it)
′, where Vit is a scalar. The main identifying assumption is that Vit is

a time-varying, continuously distributed covariate satisfying two exclusion restrictions. The re-

strictions are that neither the initial condition distribution nor the density of the individual ef-

fect depends on Vi2, . . . , ViT . That is, (Yi1, Fi) is conditionally independent of (Vi2, . . . , ViT ) given

(Vi1, Xi1, . . . , XiT ). The first exclusion restriction is implicitly imposed in most of the empirical

applications cited above, nearly all of which assume that the initial conditions distribution depends

only on initial period covariates. The second exclusion restriction is also imposed in many of the

empirical models cited above. For example, Cameron and Heckman (2001), Alessie et al. (2004),

Contoyannis et al. (2004) and Roberts and Tybout (1997) assume that the individual effect is in-

dependent of all covariates. Kerr et al. (2014) use the Mundlak (1978) projection, assuming that

Fi | Wi is normally distributed with mean γ′
(
T−1

∑T
t=1Wit

)
. Hyslop (1999) allows the individ-

ual effect to be correlated with non-labor income and the presence of children in the household

in estimating a model of female labor supply but finds that these correlations are statistically

insignificant.
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The second exclusion restriction is similar to the special regressor assumption of Honore and

Lewbel (2002). As they argue, this assumption is natural in many cases where γtYi(t−1) + β′1tXit +

αtFi represents a measure of “benefits” and β2tVit represents an observed “cost” of a decision.

In an economic model where Yit represents an individual choice, Fi often allows for variation in

individual preferences, abilities, or character traits. In such models, while Xit may include many

observed individual characteristics that are naturally correlated with Fi, Vit could be related to an

institutional factor that leads to exogenous variation in costs of participation across individuals.

Another potential application is an extension of Lewbel et al. (2011)’s model for contingent val-

uation, or willingness to pay, to allow for state dependence and unobserved heterogeneity, where

the special regressor would be assigned as part of the experimental design. Unlike in Honore and

Lewbel (2002), the special regressor, Vit, has to be time-varying for the identification result in this

paper. More specifically, the conditional support of Vi2 | Vi1 must be the same as the unconditional

support of Vi2. Honore and Lewbel (2002) are able to avoid this support restriction because of

their stationarity and time-invariant coefficients assumptions. However, this rules out some of the

potential special regressors suggested by Honore and Lewbel (2002), such as age or date of birth,

for which Vi2 is a deterministic function of Vi1.

There are few results in the literature regarding nonparametric identification of models like

the model of equation (1.1). Kasahara and Shimotsu (2009) provide several nonparametric iden-

tification results for finite mixture models of dynamic discrete choice. The only result in that

paper that allows for lagged dependent variables requires T ≥ 6 and imposes stationarity, that

is, time-invariance of the conditional choice probabilities. Moreover, they assume throughout that

the individual effect has a finite support. Hu and Shum (2012) do not assume finite support of

Fi but require T = 5 and do not prove identification of the initial conditions distribution or the

distribution of the individual effects. Shiu and Hu (2013) show that by strengthening some of the

assumptions in Hu and Shum (2012), identification is possible with only 2 periods of data on the

outcome and 3 periods of data on covariates. Both Shiu and Hu (2013) and Hu and Shum (2012)

use an argument that treats the observed covariates as a sort of proxy for Fi. Browning and Carro

(2014) provide several interesting results for the binary choice case. However, they do not provide

any results for the nonstationary case with observed covariates and they assume the support of Fi

is finite.
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My identification argument suggests nonparametric and semiparametric sieve maximum like-

lihood estimators (MLE) that are a natural generalization of the standard random effects MLE.

I provide simulations that demonstrate the practical importance of the new identification result

through a Monte Carlo study of a particular semiparametric sieve MLE in the binary choice model

of equation (1.1). Through these simulations I show that a random effects MLE of the coefficients in

the linear latent index model can be biased when the initial conditions distribution is misspecified.

A semiparametric sieve MLE that treats both the initial conditions distribution and the distribu-

tion of individual effects nonparametrically effectively eliminates the bias and in some cases leads

to a reduction in the mean squared error.

The remainder of this paper is organized as follows. Section 2 provides some additional discus-

sion of the related literature. In Section 3, I discuss the model and assumptions. Section 4 provides

the main identification result. Section 5 discusses lower level conditions for the assumptions stated

in Section 3. Section 6 reports the results of the Monte Carlo study and Section 7 concludes.

2 Related literature

One common solution to the incidental parameters problem (Neyman and Scott, 1948) is the

random effects approach in which the (conditional) distribution of the unobserved individual effects

is modeled parametrically. Heckman (1981a) noted that in a dynamic model this approach requires

specifying the distribution of initial conditions as well.3 The random effects approach has been

extended subsequently to minimize the restrictions that must be imposed (see, inter alia, Newey,

1994; Arellano and Carrasco, 2003; Gayle and Namoro, 2013).

A separate approach is to avoid the specification of random effects and initial conditions distri-

butions entirely. In a linear model, individual effects can be differenced out, leading to identification

of a broad class of models where the dependence between individual effects and covariates is unre-

stricted (Ahn et al., 2001, 2013; Anderson and Hsiao, 1982; Arellano and Bond, 1991; Arellano and

Bover, 1995; Holtz-Eakin et al., 1988). In some cases the differencing approach can be extended to

nonlinear models (see Bonhomme, 2012, for a general treatment). For example, Rasch (1961) and

Andersen (1970) showed that the differencing approach can be extended to the static binary choice

3Alternatively, Wooldridge (2005) recommended conditioning on the initial condition.
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panel model if the errors are logistically distributed, and Honore and Kyriazidou (2000) showed

the same for the dynamic binary choice model.

The differencing approach has been extended to a semiparametric model for binary outcomes

as well. Manski (1987) obtained identification of the static binary choice model without any dis-

tributional assumptions and Honore and Kyriazidou (2000) extended this idea to a model with

lagged dependent variables. Honore and Lewbel (2002) provide an alternative argument for the

same linear latent index model that uses the special regressor method of Lewbel (1998). Cameron

and Heckman (1998) prove a similar result for a dynamic model of educational attainment, though

they assume all covariates are independent of the unobserved individual effects. Recently, Khan

et al. (2016), Pakes and Porter (2016), and Shi et al. (2018) have extended this idea to a semipara-

metric model for multinomial outcomes. Honore and Tamer (2006) demonstrate that if the support

conditions on the regressors required by Honore and Kyriazidou (2000) do not hold then the model

is not identified if the distribution of the errors is specified as something other than logistic, though

the identified set for some parameters can be very small. Chernozhukov et al. (2013) apply similar

ideas to a nonseparable model, deriving nonparametric and semiparametric bounds for average and

quantile effects.

Browning and Carro (2007) demonstrate how the semiparametric model restricts the nature of

unobserved heterogeneity because of the reliance on a linear latent index. Kasahara and Shimotsu

(2009) and Browning and Carro (2014) provide identification results for dynamic binary choice

models by imposing a finite support for the individual effects. They prove several important

results showing how identification depends on the number of support points for the distribution of

individual effects relative to the length of the panel. Another key insight of these papers is that

variation in the histories of the covariates in the presence of restrictions on the dependence between

the covariates and the individual effects, increases the number of allowable support points of the

individual effect for a fixed panel length.

Several other related results allow for a continuous support for the individual effects when the

dependent variable is continuously distributed and/or a continuous proxy is available. This paper

is most closely related to several other papers that apply nonparametric identification results from

the measurement error literature (Hu, 2008; Hu and Schennach, 2008; Carroll et al., 2010) to show

identification of a panel data model with unobserved effects (Hu and Shum, 2012; Shiu and Hu,
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2013; Sasaki, 2015; Freyberger, 2018). Only Hu and Shum (2012) and Shiu and Hu (2013) allow

the outcome to be discrete. These papers also allow the unobserved individual effect to be time-

varying. However, they rely on sufficient dependence between a continuously distributed covariate

and the individual effects. In contrast, this paper shows that identification can instead be attained

if the latent index in a random utility model for the binary outcomes is a sufficient proxy for the

individual effect. The result does not require dependence between the individual effects and the

covariates.

3 Model

Let Vi = (Vi1, . . . , ViT )′, Xi = (X ′i1, . . . , X
′
iT )′, Wi = (W ′i1, . . . ,W

′
iT )′, and Yi = (Yi1, . . . , YiT )′.

Throughout the discussion of the model and assumptions and the identification analysis I treat the

joint distribution of (Yi,Wi) as known and leave the dependence on “i” implicit in the notation. I

also use a superscript to denote a partial history, that is, Z(t) = (Z1, . . . , Zt) for any variable Z in

the model. Let Yt, Vt, Xt, andWt denote the supports of Yt, Vt, Xt, and Wt, respectively, for each t,

with Yt ⊂ R, Vt ⊆ R and Xt ⊆ RK . Let F ⊆ R denote the support of F and let Y,V,X ,W denote

the supports of Y, V,X, and W , respectively. I consider only the case where |Yt| < ∞, meaning

that Yt is a discrete random variable.

For each y ∈ Y and w ∈ W, I define the observed choice probabilities, p(y | w) = Pr(Y = y |

W = w) and for each yt ∈ Yt, yt−1 ∈ Yt−1 wt ∈ Wt, and f ∈ F I define the conditional choice

probabilities, pt(yt | yt−1, wt, f) = Pr(Yt = yt | Yt−1 = yt−1,Wt = wt, F = f).

Assumption 3.1. For all y ∈ Y and w ∈ W,

p(y | w) =

∫ T∏
t=2

pt(yt | yt−1, wt, f)fY1,F |V1,X(y1, f | v1, x)df (3.1)

This represents the conditional distribution observed in the data, p(y | w), in terms of the under-

lying conditional choice probabilities, pt, and fY1,F |V1,X(y1, f | v1, x) = p1(y1 | v1, x, f)fF |V1,X(f |

v1, x) where p1(y1 | v1, x, f) = Pr(Y1 = y1 | V1 = v1, X = x, F = f) represents the conditional dis-

tribution of the initial condition and fF |V1,X is the conditional density of the unobserved individual

effect given the initial value of the covariate V and the full history of the covariates X. In the panel
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data literature it is standard to factor p(y | w) as
∫ ∏T

t=2 pt(yt | yt−1, vt, xt, f)fY1,F |W (y1, f | w)df ,

treating W and F as exogenous. Assumption 3.1 imposes two additional restrictions in addition to

assuming that this standard factorization holds. First, the initial condition, p1 depends only on V1

and X and not on the remaining components of V . Second, the individual effect F is also indepen-

dent of V2, . . . , VT conditional on V1 and X. The discussion here will focus on these two additional

restrictions. However, in Section A.1 in the appendix I discuss the implications of Assumption 3.1

in the context of a dynamic discrete choice model where (Y,W ) are modeled jointly as a Markov

process conditional on F .

First, consider the restriction on the individual effects implied by Assumption 3.1. This restric-

tion is similar to the special regressor condition of Lewbel (1998) in that it requires at least one of

the covariates to be conditionally independent of the individual effect.4 The following proposition

shows that it can be viewed as a restriction on the dynamic process for the covariates conditional

on F .

Proposition 3.1. Let Xt = (X ′t1, X
′
t2)′. Suppose that for each t ≥ 2,

(i) (Vt, Xt1) ⊥⊥ F |Xt2,W
(t−1)

(ii) Xt2 ⊥⊥ (V (t−1), X
(t−1)
1 )|X(t−1)

2 , F

Then F ⊥⊥ (V2, X21, . . . , VT , XT1)|V1, X11, X
(t−1)
2 .

The proof is provided in Section A.1 in the appendix.

The implication of Proposition 3.1 is that it is sufficient to be able to split the covariates Wt

into two types. The first type, Vt and Xt1, can depend on the current and past values of the

other covariates but are conditionally independent of the individual effect F . The second type can

depend on F as well as current and past values of all variables of this type but are conditionally

independent of past values of the other type. This is a natural assumption in discrete choice

models of demand where Vt and Xt1 consist of price and other product characteristics and Xt2

consists of consumer characteristics. Chintagunta et al. (2001), for example, use scanner data for

a sample of consumers in a small U.S. city. Product level prices, advertisements, and the presence

of store displays vary across consumers because different consumers in the sample shop at many

4Unlike in Honore and Lewbel (2002), who also apply a special regressor condition in a panel data model, this
conditional independence is not conditional on lags of Yt, thus avoiding the problem identified by Chen et al. (2018b).
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different stores at different times over a period of two years. The individual characteristics include

variables such as household income and household size. They motivate their analysis using a

dynamic discrete choice model where F represents unobserved heterogeneity across consumers in

tastes for the different products. In this setting the product prices are good candidates for the

special regressor Vt. By Proposition 3.1, Assumption 3.1 can allow for unrestricted dependence

between household characteristics and unobserved tastes and also for the possibility that changes

over time in household income can effect the prices consumers face. The latter is important to

account for as household income affects what neighborhood they live in as well as when and where

they shop.

Next, the restriction on the distribution of the initial condition is easier to justify if period

t = 1 indicates the initial period of the dynamic process and not just the first period observed

by the econometrician. In that case it is standard to make the even stronger assumption that

Pr(Y1 = y1 | W,F ) = Pr(Y1 = y1 | W1, F ), as would be the case if Y1 = r1(W1, F, U1) for some

function r1 and unobservable U1 that is independent of (W,F ) (strict exogeneity in the initial

period). Consider, however, the case where the dynamic process started at some point in the past

and t = 1 is the first period observed. Let Y 0 denote the vector of past outcomes, going back

to the initial period of the dynamic process. Then Pr(Y1 = y1 | W,F ) =
∑

y0 Pr(Y1 = y1 |

Y 0 = y0,W, F )P (Y 0 = y0 | W,F ). Next, let W 0 denote the vector of past covariates so that we

can write Pr(Y 0 = y0 | W,F ) =
∫
Pr(Y 0 = y0 | W,F,W 0)dFW 0|W,F . Then, if we assume that

Pr(Y1 = y1 | Y 0 = y0,W, F ) = Pr(Y1 = y1 | Y 0 = y0,W1, F ) and that Pr(Y 0 = y0 | W,F,W 0) =

Pr(Y 0 = y0 | F,W 0), it only remains to justify the assumption that FW 0|W,F = FW 0|V1,X,F . This

is satisfied, for example, under a first order Markov assumption that FWt|W (t−1),W 0,F = FWt|Wt−1,F

as this implies that the density, fW 0|W,F , satisfies

fW 0|W,F =
fW2,...,WT |W1,F fW1|W 0,F fW 0|F∫
fW2,...,WT |W1,F fW1|W 0,F fW 0|FdW

0
(3.2)

=
fW1|W 0,F fW 0|F∫
fW1|W 0,F fW 0|FdW

0
= fW 0|W1,F

While this result treats V and X interchangeably, conditions similar to those in Proposition 3.1

could also be used to show that FW 0|W,F = FW 0|V1,X,F .
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For the rest of the analysis consider the case with T = 3. The identification argument involves

using p(y | w) as the kernel of an integral operator and using Assumption 3.1 to derive an infinite-

dimensional eigenvalue decomposition under sufficient “rank” conditions. Formulating the operator

equivalences requires assumptions regarding the support of W , since p(y | w) is only observed for

w ∈ W, and also requires the functions involved in the factorization of p(y | w) to be bounded.

Conveniently, the functions pt(yt | yt−1, vt, xt, f) and p1(y1 | v1, x, f) are bounded by definition.

Assumption 3.2. W = V1 × V2 × V3 ×X and |X | <∞.

Assumption 3.3. The density fF |V1,X is bounded.

The requirement that V has rectangular support is necessary because identification is based on

probabilities conditional on V rather than the density of V . The latter is defined for v outside of the

support of V but the former is not. This is the reason that Hu and Schennach (2008), Hu and Shum

(2012), and Shiu and Hu (2013) do not need such an assumption. On the other hand, Kasahara

and Shimotsu (2009) require a similar support restriction. If instead, V contains a rectangular

subspace then identification on this subspace is possible. However, this weaker condition still rules

out time-invariant Vt. While V1, V2, and V3 will be treated as continuously distributed random

variables, Assumption 3.2 imposes that X is discrete. This simplifies the analysis but does not

appear to be necessary.

Next, let Yt = {yt1, yt2, . . . , ytJt} for each t. The next three assumptions will be stated relative

to a baseline choice in periods 1 and 2, y11 and y21.

Assumption 3.4. For any x3 ∈ X3,

Pr (∃f∗ ∈ F s.t. p3(Y3 | y21, V3, x3, f
∗) = p3(Y3 | y21, V3, x3, f)) < 1 for almost all f ∈ F .

This is a monotonicity assumption analogous to Assumption 4 in Hu and Schennach (2008)

and Assumption 3.4 in Shiu and Hu (2013). It is satisfied if for any x3 ∈ X3, any v3 ∈ V3, and

any y3 ∈ Y3, p3(y3 | y21, v3, x3, ·) is a strictly monotonic function over F . The statement of the

assumption also allows for p3(y3 | y21, v3, x3, ·) to be flat for some values of v3 and y3 and accounts

for the technicality that p3(y3 | y21, v3, x3, ·) can always be redefined on a set of measure 0 in F
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without affecting the distribution of the data. The role of this assumption in the identification

argument is to prevent multiplicity of eigenvalues in the infinite-dimensional eigenvalue problem.

Assumption 3.5. For each y1 ∈ Y1 and x2 ∈ X2, there exists a known v̄2 ∈ R ∪ {−∞,∞} and

a known 0 < ` ≤ 1 such that limv2→v̄2 p2(y21 | y1, v2, x2, f) = ` for all f ∈ F . If |v̄2| < ∞ then

v̄2 ∈ V2. If v̄2 = ±∞ then V2 is unbounded from above or below, respectively.

Assumption 3.5 is similar to an identification at infinity condition. It is used to fix the scale

of the eigenfunctions, which, unlike in the typical application, are not densities and hence do not

integrate to 1. It requires that there is a limiting case in the support of V2 at which the choice

probability is known. In many cases this will be satisfied with ` = 1, provided that the support of

V2 is large enough, meaning that in the limiting case the individual chooses y2 = y21 with certainty.5

However, this assumption also allows for a case where V2 represents time given to make a decision

and as V2 → 0 the choice becomes “random”, meaning that the choice probability converges to

one over the number of alternatives. This assumption is not needed if F is discrete, as shown in

Section A.3 in the appendix. The proof in that case suggests that it might also not be needed in

the continuous case. Furthermore, in Section 5 for a linear latent index model I state lower level

conditions for the “rank” conditions stated below in Assumption 3.7 and find that Assumption 3.5

is implied by these lower level conditions.

Assumption 3.6. There exists w20 = (v20, x20) ∈ W2 and a known one-to-one function, π : R→

[0, 1], with π(R) = [0, 1] such that limw2→w20 p2(y21 | y11, w2, f) = π(f) for almost all f ∈ F . The

support X satisfies the condition that for each x3 ∈ X3, there exists x1 ∈ X1 such that (x1, x20, x3) ∈

X .

The first part of Assumption 3.6 is a normalization of the function p2(y21 | y11, w20, ·).6 A nor-

malization is required because taking any monotonic transformation of F in the model produces

an observationally equivalent model. Other normalizations are possible but this is the nonpara-

metric version of the most common type of normalization in parametric versions of this model, as

5While this limiting case is often v̄2 = ±∞, if y2 represents labor force participation and v2 represents non-labor
income then v̄2 = 0 may be a plausible alternative that does not require the support of non-labor income to be
unbounded.

6As a conditional probability, p2(y21 | y11, w2, f) can have a removable discontinuity at w20 because it is only
uniquely defined up to a set of measure 0. The assumption implicitly requires that it does not have any other type
of discontinuity because it assumes that the limit exists.
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discussed in Section 5. The second part of the assumption, the condition on the support of X,

is needed so that the normalization can be applied as X3 is varied. It rules out time-invariant

covariates as we cannot distinguish a time-invariant covariate from the individual effect F in the

model. Time-invariant covariates could be allowed if they are independent of F , though this would

require a different identification argument (cf. Hausman and Taylor, 1981).

The last assumption is the injectivity of two integral operators.

Assumption 3.7.

(i) For each y1 ∈ Y1 and each x ∈ X , if ψ ∈ L∞(F) and
∫
F fY1,F |V1,X(y1, f | v1, x)ψ(f)df = 0

for all v1 ∈ V1 then ψ ≡ 0.

(ii) For each y1, y2 ∈ support(Y1, Y2) and each x2 ∈ X2, if ψ ∈ L1(F) and
∫
F p2(y2 | y1, v2, x2, f)ψ(f)df =

0 for all v2 ∈ V2 then ψ ≡ 0.

This assumption is analogous to a full rank condition on two matrices in the finite-dimensional

case where F is discrete. Operator injectivity conditions are common in nonseparable mod-

els of measurement error (Hu and Schennach, 2008; Carroll et al., 2010) and are closely re-

lated to completeness conditions in nonparametric IV models (Canay et al., 2013; Andrews, 2017;

D’Haultfoeuille, 2011; Hu and Shiu, 2018). For example, condition (i) is satisfied if the family of

conditional distributions V1 | Y1, F,X is complete. On the other hand, if F is independent of V1

conditional on X then
∫
F fY1,F |V1,X(y1, f | v1, x)ψ(f)df =

∫
F p1(y1 | f, v1, x)fF |X(f | x)ψ(f)df

and in this case condition (i) can apparently not be stated as a completeness condition generally,

though I show in Section 5 that it can be for the case of a linear latent index model such as that of

equation (1.1), or more generally under a monotonicity condition. Similarly, I also show there that

condition (ii) is implied by a completeness condition in these two cases as well, though it apparently

cannot be in general.

4 Identification

This section provides the main identification result and an overview of its proof. The full proof is

in Section A.2 in the appendix.
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Theorem 4.1. Under Assumptions 3.1-3.7, the functions p1, p2, p3, and fF |V1,X are uniquely de-

termined by the function p(y | w).

Let p(y1, y2 | w) = Pr(Y1 = y1, Y2 = y2 |W = w). By Assumption 3.1,

p(y1, y2 | w) =
∑
y3∈Y3

p(y | w) (4.1)

=

∫
p2(y2 | y1, w2, f)fY1,F |V1,X(y1, f | v1, x)df.

Fix the values of y, v3, and x and define the operators

[Ly1,y2;V1,x1,V2,x2,v3,x3g](v2) =

∫
V1

p(y1, y2 | w)g(v1)dv1 (4.2)

[Ly;V1,x1,V2,x2,v3,x3g](v2) =

∫
V1

p(y | w)g(v1)dv1

Both operators map any absolutely integrable function g : V1 → R to a bounded real-valued function

defined on V2.7 If V1 and V2 were discrete random variables, with Vt = {vt1, . . . , vtKt} for t = 1, 2,

then we could define two K2 ×K1 matrices, (p(y1, y2 | v1k, x1, v2j , x2, v3, x3))j=1,...,K2,k=1,...,K1 and

(p(y | v1k, x1, v2j , x2, v3, x3))j=1,...,K2,k=1,...,K1 . The operators Ly1,y2;V1,x1,V2,x2,v3,x3 and Ly;V1,x1,V2,x2,v3,x3

are the infinite-dimensional analogs of these matrices.8 These operators are identified directly from

the data and hence are treated as known. To simplify the exposition I leave the dependence on

y, v3, and x implicit in the notation where possible and refer to the operators Ly1,y2;V1,x1,V2,x2,v3,x3

and Ly;V1,x1,V2,x2,v3,x3 as L1 and L2, respectively.

Next, for any values of y, v3, and x, define the operators

[Λy1;V1,x,F g](f) =

∫
V1

fY1,F |V1,X(y1, f | v1, x)g(v1)dv1

[Λy2;y1,V2,x2,F g](v2) =

∫
F
p2(y2 | y1, v2, x2, f)g(f)df (4.3)

[∆y3;y2,v3,x3,F g](f) = p3(y3 | y2, v3, x3, f)g(f).

7This is because p(y1, y2 | w) and p(y | w) are bounded by 1, which implies that
∣∣∣∫V1 p(y1, y2 | w)g(v1)dv1

∣∣∣ ≤∫
V1
|p(y1, y2 | w)||g(v1)|dv1 ≤

∫
V1
|g(v1)|dv1 and

∣∣∣∫V1 p(y | w)g(v1)dv1

∣∣∣ ≤ ∫V1 |p(y | w)||g(v1)|dv1 ≤
∫
V1
|g(v1)|dv1.

8See Section A.3 in the appendix for an analysis of identification in the discrete case.
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The operator Λy1;V1,x,F maps any absolutely integrable function g : V1 → R, to a bounded, abso-

lutely integrable real-valued function defined on F . The operator Λy2;y1,V2,x2,F maps any absolutely

integrable function g : F → R to a bounded real-valued function defined on V2. And ∆y3;y2,v3,x3,F

is a diagonal operator that takes any function g : F → R and returns another real-valued function

defined on F .9 Again, I leave dependence on y, v3, and x implicit in the notation where possible

and refer to these operators as Λ1,Λ2, and ∆, respectively.

By Assumption 3.1, for any absolutely integrable function g : V1 → R,

[L2g](v2) =

∫
V1

(∫
F
p3(y3 | y2, w3, f)p2(y2 | y1, v2, x2, f)fY1,F |V1,X(y1, f | v1, x)df

)
g(v1)dv1

=

∫
F
p2(y2 | y1, v2, x2, f)p3(y3 | y2, w3, f)

(∫
V1

fY1,F |V1,X(y1, f | v1, x)g(v1)dv1

)
df

=

∫
F
p2(y2 | y1, v2, x2, f)p3(y3 | y2, w3, f)[Λ1g](f)df (4.4)

=

∫
F
p2(y2 | y1, v2, x2, f)[∆Λ1g](f)df

= [Λ2∆Λ1g](v2),

using Fubini’s theorem to interchange the order of integration. Summing over y3 ∈ Y3 we also

have that [L1g](v2) = [Λ2Λ1g](v2). This defines two operator equivalences on L1(V1) := {g : V1 →

R such that
∫
V1
|g(v1)|dv1 <∞} which can be written as10

L1 = Λ2Λ1 (4.5)

L2 = Λ2∆Λ1.

Thus, this model takes a form similar to the nonclassical measurement error model of Hu and

Schennach (2008).

Following Hu and Schennach (2008), condition (ii) of Assumption 3.7 implies that Λ2 is injective

so that Λ1 = Λ−1
2 L1 and therefore L2 = Λ2∆Λ−1

2 L1. Furthermore, condition (i) of Assumption 3.7

9If g is absolutely integrable then ∆g is as well. This result, and the other results in this paragraph, follow
from (a) fY1,F |V1,X(y1, f | v1, x) = p1(y1 | v1, x, f)fF |V1,X(f | v1, x), (b) p1(y1 | v1, x, f), p2(y2 | y1, w2, f), and
p3(y3 | y2, w3, f) are bounded, and (c) fF |V1,X(f | v1, x) is absolutely integrable as a function of f , because it is a
density, and is bounded by Assumption 3.3. The proofs follow the same arguments as in the footnote 6.

10Technically, L1(V1) is defined as the space of all equivalence classes of absolutely integrable functions that are
equal almost everywhere. Thus, we can apply results regarding linear operators on a Banach space.
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implies that Λ1 is surjective11 which implies that the operator equivalence

L2L
−1
1 = Λ2∆Λ−1

2 , (4.6)

holds for all functions in the range of Λ2.12 Importantly, the left-hand side is known and the

right-hand side involves the unknown parameters of the model.

The operator equivalence (4.6) can be viewed as a spectral decomposition, as in Hu and Schen-

nach (2008). Applying the same spectral theorem used in Hu and Schennach (2008), I can conclude

that this decomposition is unique up to (i) possible multiplicity of “eigenvalues”, which are the el-

ements of the set {p3(y3 | y2, w3, f) : f ∈ F}, (ii) scaling of the “eigenfunctions”, p2(y2 | y1, ·, x2, f)

for each f ∈ F , and (iii) reordering or reindexing of the eigenvalues and associated eigenvectors.

Assumption 3.4 prevents problems due to multiplicity of eigenvalues. Assumption 3.5 resolves the

scale of the eigenfunctions. Assumption 3.6 is a normalization that rules out models obtained by

reordering/reindexing the eigenvalues.

As noted by Hu and Schennach (2008), identification of the operators Λ1, Λ2 and ∆ implies

identification of the kernel functions fY1,F |V1,X , p2 and p3, respectively. Then the density fF |V1,X

is identified because fF |V1,X =
∑

y1∈Y1
fY1,F |V1,X . And the initial condition distribution, p1, is

identified because p1 = fY1,F |V1,X/fF |V1,X .

Importantly, Assumptions 3.4-3.7 do not impose restrictions that must hold for all values of

y, v3, x. It would be undesirable, for example, to impose the normalization in Assumption 3.6 for

all values of x2 and y1. The reason this is not required is that as we vary y1, y2, x1, x2 we obtain

different pairs of operator equivalences from (4.4) all with the same ∆, and as we vary y3, v3, x1, x3

we obtain different pairs of operator equivalences all with the same Λ2, and as we vary y2, y3, v3 we

obtain different pairs of operator equivalences all with the same Λ1. The proof proceeds by first

applying the above argument for y1 = y11, y2 = y21, and x2 = x20. For x2 6= x20 and y1 6= y11, the

eigenvalues in (4.6) have been identified, because p3 does not vary with x2 or y1, but the eigenvectors

have not. Since Assumption 3.5 holds for all x2 and any y1 it can be used to determine the scale of

the eigenfunction associated with each eigenvalue and hence p2 is identified at all x2 ∈ X2 and all

11More formally, it implies that the range of the operator Λ1 is dense in the domain of the operator Λ2, L1(F).
12And by extension, the equivalence is defined for all functions in the closure of the range of Λ2, which is a Banach

space, allowing us to apply the spectral theorem from Dunford and Schwartz (1971).
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y1 ∈ Y1. Thus, for any x and any y1, Λy1;V1,x,F is identified. Therefore Λy2;y11,V2,x2,F is identified

for all y2 ∈ Y2 since Assumption 3.7 implies that Λy2;y11,V2,x2,F = Ly1,y2;V1,x1,V2,x2,v3,x3Λ−1
y1;V1,x,F

.

We will conclude this section with several remarks concerning Theorem 4.1.

Remark 1: Theorem 4.1 does not contradict the impossibility result of Chamberlain (2010) because

Assumption 3.5 either requires V2 to have unbounded support or requires the structural error to have

bounded support (see the model in the Section 5) . Chamberlain (2010), however, assumes that the

structural error has unbounded support while the covariates all have bounded support.

Remark 2: If F and V are both discrete then we can use the matrix analogue of equations, L1 =

Λ2Λ1 and L2 = Λ2∆Λ1, to show identification. See Section A.3 in the appendix. Kasahara and

Shimotsu (2009) and Browning and Carro (2014) provide results for this case. However, neither

paper shows identification for T = 3 with time-varying choice probabilities.

Remark 3: The result also implies identification of a static version of the model where pt(yt |

yt−1, wt, f) = pt(yt | wt, f). See Section A.4 in the appendix for a more general result in the static

case.

Remark 4: The identification result makes use of the fact that varying y1 varies Λ2 but not ∆.

Therefore, the assumption that Pr(Y3 | Y1, Y2,W3, F ) = Pr(Y3 | Y2,W3, F ) is required when T = 3.

However, for T sufficiently large, multiple lags of the dependent variable can be allowed, as shown

in Section A.5 in the appendix.

Remark 5: The identification argument can be modified to allow KF := dim(F ) > 1 if T ≥

2KF + 1. In that case, identification could be based off a version of equations (4.4) where the

kernel of the operator Λ1 is fY1,...,YKF
,F |V1,W , the kernel of the operator Λ2 is Pr(YKF +1, . . . , Y2KF

|

YKF−1,WKF +1, . . . ,W2KF
) and ∆ is the diagonal operator that multiplies by Pr(YT | YT−1,WT ).

Freyberger (2018) provides a different identification argument in a related model for KF ≥ 1 and

T ≥ 2KF + 1.

Remark 6: As demonstrated by Shiu and Hu (2013), certain average effects can be identified without

imposing the normalization in Assumption 3.6. Indeed, without Assumption 3.6, the model is

equivalent to a model with F ∗ = π−1(p2(y21 | y11, w20, F )) that does satisfy Assumption 3.6. It

is straightforward to show that in these two models, the average structural functions,
∫
pt(yt |

yt−1, wt, f)fF (f)df , are the same.
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Remark 7: Suppose there is a variable Y ∗ that is influenced by the sequence Y1, . . . , Y3. For example

Y1, . . . , Y3 may represent a sequence of decisions over time and Y ∗ an outcome of these decisions.

In Section A.6 in the appendix, I give conditions under which fY ∗|Y,W,X∗,F is identified, where X∗

is a vector of additional covariates not included in W . Identification of the model of Section 3 when

T > 3, which does not immediately follow from Theorem 4.1, is also a special case of this result.

Remark 8: An alternative model for a dynamic discrete choice process posits that Pr(Yt | Y (t−1),Wt, F ) =

Pr(Yt |
∑t−1

τ=1 Yτ ,Wt, F ). This may be an appropriate model, for example, for the accumulation

of human capital where Yt indicates accumulation of an additional year of schooling in year t and

hence
∑t

τ=1 Yτ represents the schooling level attained by year t (see, e.g., Cameron and Heckman,

2001; Heckman et al., 2016). The logic of Theorem 4.1 can readily be adapted to this case. Identi-

fication is still possible with T = 3 because, unlike the case where additional lags are included, we

can still vary Λ2 without varying ∆ since support(Y1 | Y1 + Y2) is not a single point in Y1. See

Aguirregabiria et al. (2018) for an application of this idea in a multinomial logit model.

5 Further discussion of assumptions

The assumptions stated in Section 3 allow for a broad range of applications. However, these

assumptions can be stated at a lower level given more structure on the model. I now study these

assumptions in a binary choice panel model with a linear latent index and a binary choice model with

a general nonseparable index under a monotonicity condition. I also discuss how the identification

result in this paper extends or complements existing results for these particular models.

5.1 A linear latent index binary choice model

First, consider the linear latent index model,

Yt = 1(δt + γtYt + βt1Vt + β′t2Xt + αtF ≥ Ut), t ≥ 2, (5.1)

where the errors {Ut}t≥2 are mutually independent, independent of (W,F ), with distribution FUt .

The conditional choice probabilities in this model are given by pt(1 | yt−1, vt, xt, f) = FUt(δt +

γtyt−1 + βt1vt + β′t2xt +αtf) for t ≥ 2. Because of the conditions on Ut, Assumption 3.1 is satisfied
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in this model if Y1 is independent of (V2, V3) conditional on (F, V1, X) and F is independent of

(V2, V3) conditional on (V1, X). The model of equation (5.1) does not provide any additional

insight into whether the regularity and support conditions in Assumptions 3.2 and 3.3. However,

Assumptions 3.4-3.6 can be stated at a much lower level given the structure provided by this model.

First, Assumption 3.4 is satisfied if α3 6= 0 and FU3 is a strictly increasing distribution function

with full support on R. However, even if U3 does not have full support the assumption is satisfied

if for each x3 ∈ X3 and f ∈ F , the support of δ3 + γ3 + β31V3 + β′32x3 +α3f is large enough that it

intersects the support of U3. In that case, the conditional choice probability p3 becomes flat for F

large enough and V3 fixed but the monotonicity condition is satisfied because V3 can be sufficiently

varied. Next, Assumption 3.5 is satisfied in this model with v̄2 = sign(β21) ·∞ and ` = 1 for y21 = 1

if V2 is unbounded because limv2→v̄2 FU2(δ2 + γ2y1 + β21v2 + β′22x2 + α2f) = limu→∞ FU2(u) = 1.

Finally, Assumption 3.6 is satisfied with w20 = 0, y21 = 1 and y11 = 0 by normalizing δ2 = 0,

α2 = 1, and FU2(u) = π(u).

While the restrictions on α2 and δ2 are standard in an interactive fixed effects model, the

restriction that FU2 is known may seem to be a strong assumption given that Manski (1987),

Honore and Kyriazidou (2000) and Honore and Lewbel (2002) achieve identification without any

distributional assumptions on Ut or F . The difference is that these papers prove identification of

the finite-dimensional coefficients but not of the distribution of F or Ut for t > 2. By contrast,

Theorem 4.1 implies that, given the normalization of the distribution of U2, the distributions of U3

and F are nonparametrically identified.

The conditional logit approach of Honore and Kyriazidou (2000) and the random effects ap-

proach that is common in empirical applications further restrict the model of equation (5.1) by

assuming that FUt is known for each t and assuming that some or all of the coefficients δt, γt, βt, αt

do not vary with t.1314 A random effects model, in addition, imposes a functional form for the

initial conditions distribution and the distribution of the individual effects, fF |W . In both cases, the

parametric structure of the model allows for more general dependence between the covariates, W ,

and the individual effect, F . In the conditional logit model this dependence is fully unrestricted and

in random effects models the conditional distribution of F |W is often specified as a homoskedastic

13The conditional logit model also requires T ≥ 4.
14In some applications of the random effects model, such as Hyslop (1999), Ut is permitted to follow an AR(1)

model as well.
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normal with mean equal to a linear combination of some or all of the elements of W . It appears

that the “special regressor” assumption fF |W = fF |V1,X is the cost of nonparametric identification

of the model.15

The other cost of nonparametric identification is the operator injectivity condition of Assump-

tion 3.7 in place of a rank condition in the (fully parametric) correlated random effects model.

Consider first condition (ii) of Assumption 3.7. Suppose that FU2 is differentiable. Maintaining the

normalizations, δ2 = 0 and α2 = 1,

∂p2(1 | y1, v2, x2, f)

∂v2
=

∂

∂v2
FU2(γ2y1 + β21v2 + β′22x2 + f) (5.2)

= β21fU2(γ2y1 + β21v2 + β′22x2 + f)

Therefore, if
∫
F p2(1 | y1, v2, x2, f)ψ(f) = 0 for all v2 ∈ V2 and an absolutely integrable function

ψ then
∫
F fU2(γ2y1 + β21v2 + β′22x2 + f)ψ(f) = 0 for all v2 ∈ V2 as well. This further implies

that
∫
F f−U2(u∗2 − f)ψ(f) = 0 for all u∗2 ∈ {−(γ2y1 + β21v2 + β′22x2) : v2 ∈ V2}. This is a

convolution equation. If the characteristic function of U2 is non-vanishing and {γ2y1+β21v2+β′22x2 :

v2 ∈ V2} contains the full support of U2 then this implies that ψ ≡ 0. Therefore, in the linear

latent index model of (5.1), injectivity condition (ii) follows from mild regularity conditions on the

distribution of U2 if V2 has large enough support relative to the support of U2. Note that this

support condition implies the identification at infinity condition of Assumption 3.5, making that

assumption redundant given Assumption 3.7 in this model.

To relate this result to a completeness condition, let Y ∗2 (y1, x2) := β−1
21 (U2−F − γ2y1− β′22x2).

Then Y2 = 1(δ2 + γ2Y1 + β21V2 + β′22X2 + α2F ≥ U2) = 1(V2 ≥ Y ∗2 (Y1, X2)). In addition, if for

any fixed y1 and x2 the family of conditional densities {fF |Y ∗2 (y1,x2)(f | v) : v ∈ V2} is complete,

meaning that E(g(F ) | Y ∗2 (y1, x2) = v) for all v ∈ V2 for any g such that E|g(F )| < ∞ implies

that g = 0 almost everywhere in F , then condition (ii) of Assumption 3.7 is satisfied. This follows

15Shiu and Hu (2013) provide a different nonparametric identification result for this model that uses the observed
covariates as proxies for F . By contrast, the result here does not require any dependence between the observed
covariates and F .
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because

∫
F
fU2(γ2y1 + β21v2 + β′22x2 + f)ψ(f) = β−1

21

∫
F
fY ∗2 (y1,x2)|F (v2 | f)ψ(f)df

= β−1
21

∫
F
fF |Y ∗2 (y1,x2)(f | v2)

fY ∗2 (y1,x2)(v2)

fF (f)
ψ(f)df (5.3)

=
fY ∗2 (y1,x2)(v2)

β21
E

(
ψ(F )

fF (F )
| Y ∗2 (y1, x2) = v2

)

Next, injectivity condition (i) requires that if
∫
F p1(y1 | v1, x, f)fF |V1,X(f | v1, x)ψ(f)df = 0 for

all v1 ∈ V1 for any bounded function ψ then ψ ≡ 0. Because the conditional choice probability

p1 and the conditional density fF |V1,X both vary with v1 and f , both functions can in principle

contribute to injectivity of the operator. However, it is possible for this condition to be satisfied

even if V1 is (conditionally) independent of F so that fF |V1,X = fF |X .

To see this in a simple case, suppose that Y1 = 1(δ1 + β1V1 + ψ′X + α1F ≥ U1) where U1 is

independent of (F,W ). Then p1(1 | v1, x, f) = FU1(δ1 + β1v1 + ψ′x+ α1f). This can be rewritten

as p1(1 | v1, x, f) = F−U1/α1
(u∗1 − f) where u∗1 = −α−1

1 (δ1 + β1v1 + ψ′x), as long as α1 6= 0. If, in

addition, FU1 is differentiable then it follows that
∫
F p1(y1 | v1, x, f)fF |V1,X(f | v1, x)ψ(f)df = 0

implies that
∫
F f−U1/α1

(u∗1 − f)fF |X(f | x)ψ(f)df = 0, which is again a convolution. Therefore,

in this case, condition (i) of Assumption 3.7 holds if α1 6= 0, FU1 is differentiable and has a non-

vanishing characteristic function, and {δ1 +β1v1 +ψ′x : v1 ∈ V1} contains the full support of U1. In

addition, it can be shown that the condition follows from completeness of the family of distributions

{fF |Y ∗1 (x)(f | v) : v ∈ V1} where Y ∗1 (x) = β−1
1 (U1 − α1F − ψ′x− δ1).

If the dynamic process for {Yt} starts before period 1 then this model for the initial condition

may be hard to motivate, as discussed in Section 3. In particular, U1 would have a mixture

distribution with the mixing probabilities varying with F . Nevertheless, injectivity condition (i)

can be derived in this case from restrictions on this mixture distribution following a similar though

more tedious argument.

5.2 A general latent index model

The model of equation (5.1) is popular in applied work because of its tractability. However, it often

does not have a structural interpretation. Structural models can naturally imply nonlinearity.
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For example, Aguirregabiria et al. (2018) give conditions under which the infinite horizon utility

expected discounted utility maximization problem with per utility given by Πt(Yt) = α(y,Wt, F ) +

β(y, Yt−1,Wt) + εt(Yt) implies conditional choice probabilities of the form pt(yt | yt−1, wt, f) =

FUt(α̃(Wt, F ) + β̃(Yt−1,Wt)). They show that this result facilitates identification of β(y, Yt−1,Wt)

when FUt is the cdf of the logistic distribution. If α̃(Wt, F ) = α̃′1Wt + α̃2F and β̃(Yt−1,Wt) =

(β̃0 + β̃′1Wt)Yt−1 then this provides a structural justification for the use of the reduced form model

of equation (5.1). However, these separability restrictions may be hard to justify as they do not

follow from additive separability of the functions α(y,Wt, F ) and β(y, Yt−1,Wt). The dynamic

binary choice model for labor force participation in Hyslop (1999) is one example of this.

More generally, we can consider a latent index model where the latent index is nonseparable.

Suppose that

Yt = 1(rt(Yt−1, Vt, Xt, F ) ≥ Ut), t ≥ 2 (5.4)

and, to simplify discussion of the initial condition problem,

Y1 = 1(r1(V1, X, F ) ≥ U1). (5.5)

where {Ut}t≥1 are mutually independent, independent of (W,F ), and have cumulative distribution

functions FUt . As in the linear latent index model, if F is independent of V2, V3 conditional on V1, X

then Assumption 3.1 is satisfied, given that V2, . . . , VT are excluded from equation (5.5). Moreover,

the conditional choice probabilities are

p1(v1, x, f) = FU1(r1(v1, x, f)) (5.6)

pt(1 | yt−1, vt, xt, f) = FUt(rt(yt−1, vt, xt, f)), t = 2, 3

First, consider Assumption 3.4. For any (y2, x3), consider the random function r∗(V3, f) =

r3(y2, V3, x3, f) defined on F . Assumption 3.4 is satisfied if (i) FU3 is a strictly increasing distribu-

tion function, (ii) for each f ∈ F , the support of r∗(V3, f) intersects the support of U3 and (iii) for

almost all f ∈ F , Pr(∃f∗ ∈ F s.t. r∗(V3, f
∗) = r∗(V3, f)) < 1.

Second, consider Assumption 3.5. This is satisfied if there exists v̄2 for each (y1, x2, f) such that
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limv2→v̄2 r2(y1, v2, x2, f) exceeds U2 with probability 1. If r2 is additively separable in v2, that is

r2(y1, v2, x2, f) = r2a(y1, x2, f)+ r2b(v2), then this assumption will be satisfied if limv2→v̄2 r2b(v2) =

±∞.

Assumption 3.6 is satisfied if FU2 is assumed known and if r2(0, v20, x20, f) = f for some

v20, x20.16 It should be apparent that this restriction on r2 is a generalization of the normalizations

that δ2 = 0 and α2 = 1 in the linear latent index model. Given the structure of equation (5.4),

Assumption 3.6 could instead be replaced by other functional restrictions on r2(0, v2, x2, f), perhaps

involving integrating over the distribution of V2, rather than evaluating at a single point in the

support of V2, along the lines of the normalizations discussed in Hu and Schennach (2008) and the

subsequent literature using the same spectral decomposition approach.

Now consider Assumption 3.7 for this model, starting again with condition (ii). Suppose that

r2(y1, v2, x2, f) is strictly increasing in v2 and let r−1
2V (u2; y2, x2, f) denote the inverse in v2. Then

Y2 = 1(V2 ≥ r−1
2V (U2;Y1, X2, F )). Defining Y ∗2 (y1, x2) = r−1

2V (U2; y1, x2, F ), we also have that

Y2 = 1(Y ∗2 (Y1, X2) ≤ V2). Furthermore, because U2 is independent of F ,

FY ∗2 (y1,x2)|F (y∗ | f) = FU2(r2(y1, y
∗, x2, f)) (5.7)

so that the conditional density is fY ∗2 (y1,x2)|F (y∗ | f) = fU2(r2(y1, y
∗, x2, f)) ∂

∂y∗ r2(y1, y
∗, x2, f).

Then we have the following result.

Proposition 5.1. If equation (5.4) holds where r2(y1, v2, x2, f) is strictly increasing in v2 then

condition (ii) of Assumption 3.7 holds if support(Y ∗2 (y1, x2)) ⊆ V2 such that

E(|ψ∗(F )|) <∞ and E(ψ∗(F ) | Y ∗2 (y1, x2) = v2) = 0 for all v2 ∈ R =⇒ ψ∗(f) ≡ 0 (5.8)

Next, again consider condition (i) of Assumption 3.7 under the assumption that F is independent

of V1 conditional on X so that fF |V1,X = fF |X . Suppose, that r1(v1, x, f) is strictly increasing

in v1 and define the inverse, r−1
1V (u;x, f). Let Y ∗1 (x) = r−1

1V (U1;x, F ). Then we also have that

16This would require also that the function r2 is continuous in v2 at v20.
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Y1 = 1(Y ∗1 (X) ≤ V1) and

FY ∗1 (x)|F (y∗ | f) = FU1(r1(y∗, x, f)) (5.9)

so that the conditional density is fY ∗1 (x)|F (y∗ | f) = fU1(r1(y∗, x, f)) ∂
∂y∗ r1(y∗, x, f). Then we have

the following result, from essentially the same argument as the previous proposition.

Proposition 5.2. If F is independent of V1 conditional on X, r1(v1, x1, f) is strictly increasing in

v1, and support(Y ∗1 (x)) ⊆ V1 then condition (i) of Assumption 3.7 is implied by the condition

E(|ψ∗(F )|) <∞ and E(ψ∗(F ) | Y ∗V1 (x) = v1) = 0 for all v1 ∈ support(Y ∗1 (x))⇒ ψ∗(f) ≡ 0

(5.10)

6 Estimation

Given an i.i.d. sample {Yi,Wi}ni=1 from a distribution satisfying Assumption 3.1, a natural approach

to estimation is based on the implied likelihood function,

`i(θ) :=

∫ T∏
t=2

pt(Yit | Yi(t−1),Wit, f ; θ)p1(Yi1 | Vi1, Xi, f ; θ)fF |V1,X(f | Vi1, Xi; θ)df (6.1)

A sieve maximum likelihood estimator solves

max
θ∈Θn

n∑
i=1

log(`i(θ)) (6.2)

where Θn is a sequence of finite-dimensional sieve spaces that approximates the parameter space Θ.

For a fully nonparametric estimator, θ = (p1, p2, . . . , pT , fF |V1,X), and Θ is the infinite-dimensional

space of functions satisfying Assumptions 3.3-3.7. If the parameter space Θ is restricted to be

finite-dimensional in some dimensions by imposing functional form assumptions then the solution to

(6.2) is a semiparametric sieve MLE. Consistency and asymptotic normality follow under conditions

given in Shen et al. (1997), Chen and Shen (1998), Ai and Chen (2003), and Bierens (2014). If the

parameter space Θ is restricted to be finite-dimensional in all dimensions and Θn = Θ then the

solution to (6.2) is the standard correlated random effects MLE.
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6.1 A semiparametric estimator for the binary choice model

Consider the model of equation (5.4). Suppose that FUt = FU is a known distribution function,

such as the probit or logit function. Further, suppose that rt(Yt−1, Vt, Xt, F ) = r(Yt−1, Vt, Xt, F ;βt)

for t ≥ 2 where the function r is known given the vector of parameters βt. Then θ = (β, p1, fF |V1,X)

where β = (β′1, . . . , β
′
T )′ and the functions p1 and fF |V1,X are to be estimated nonparametrically.

The likelihood function takes the form

`i(θ) :=

∫ T∏
t=2

pt(Yit | Yi(t−1),Wit, f ;βt)p1(Yi1 | Vi1, Xi, f)fF |V1,X(f | Vi1, Xi)df (6.3)

where pt(Yit | Yi(t−1),Wit, f ;βt) = FU (rt(Yi(t−1), Vit, Xit, f ;βt))
Yit
(
1− FU (rt(Yi(t−1), Vit, Xit, f ;βt))

)1−Yit .
Then defining Θn involves specifying a function space for p1 that is restricted to functions bounded

between 0 and 1 and a function space for fF |V1,X that is restricted to bounded, positive functions

that integrate to 1.

6.2 Monte Carlo simulations

In this section, I present the results of a Monte Carlo study of a semiparametric sieve MLE in a

binary choice model. I generate an initial draw, Yi,−4 ∼ Bernoulli(1/2). Then for t = −3, . . . , 3, I

generate Yi,t according to

Yi,t = 1(δt + γYi,t−1 + βVi,t + αtFi ≥ Ui,t) (6.4)

I use time-invariant coefficients, δt = 0 and αt = 1. The errors, Ui,−3, . . . , Ui,3 are generated inde-

pendently from the standard normal distribution and Vi,t = Vi,t−1 +ηi,t with Vi,−4 and ηi,−3, . . . , ηi,3

also generated independently from the standard normal distribution. Finally, F is generated inde-

pendently from either a N(0, 1) distribution (model 1) or a mixture of N(−2, 0.04) and N(2, 0.04)

with mixing probability 1/2 (model 2).

I discard data from before period t = 1 so that I only use 3 periods of data in the estimation.

I implement two estimators. Both estimators are in the class of maximum likelihood estimators

defined by equations (6.1) and (6.2). The first is a fully parametric random effects MLE with

pt(1 | Yi,t−1, Vit, f ; θ) = Φ(γYi,t−1 + βVi,t + Fi), p1(1 | Vi1, f ; θ) = Φ(δ1 + β1Vi1 + α1Fi), and
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fF |Vi1(f | v1) = fF (f) = 1
σF
φ
(
f−µF
σF

)
. In model 1, the initial condition distribution is misspecified

but not the individual effects distribution. In model 2, both distributions are misspecified. The

second estimator is a semiparametric sieve MLE that imposes the same parametric form for the

conditional choice probabilities p2 and p3 but treats both p1 and fF nonparametrically, though I

maintain the assumption that fF |Vi1(f | v1) = fF (f). I use the sieve space of Hermite polynomials

of degree Jn for fF and the artificial neural network sieve space with logistic activation function

and degree Kn. The estimators implemented for the interactive fixed effects model are the same

except that p3(1 | Yi,t−1, Vit, f ; θ) = Φ(δt + γYi,t−1 + βVi,t + αtFi). I use period t = 2 to normalize:

δ2 = 0 and α2 = 1.

Bias Std.	Dev.	 MSE Bias Std.	Dev.	 MSE
γ -0.010 0.125 0.016 -0.009 0.132 0.018
β 0.009 0.052 0.003 0.007 0.061 0.004
ATE -0.003 0.050 0.003 -0.001 0.054 0.003

γ -0.642 0.113 0.424 0.006 0.130 0.017
β 0.047 0.035 0.003 0.037 0.048 0.004
ATE -0.055 0.009 0.003 0.006 0.029 0.001

Notes:	These	results	were	obtained	from	a	Monte	Carlo	simulation	with	250	iterations.	In	each	
iteration	I	used	a	sample	size	of	n=2000.	The	true	value	of	the	ATE	is	0.2576	in	model	1	and	0.0801	in	
model	2.	

model	1

model	2

random	effects	MLE semiparametric	sieve	MLE
Table	1.	Monte	Carlo	summary

Table 1 provides the bias, standard deviation, and MSE of coefficients in each model, as well

as the average treatment effect at the mean value of V3 = 0,

ATE =

∫
F

(p3(1 | 1, 0, f)− p3(1 | 0, 0, f)) fF (f)df.

The results in this table were obtained using Jn = 4 and Kn = 2 for the semiparametric sieve MLE.

In the first model, both estimators have minimal bias while the sieve ML estimator is slightly less

efficient. The good performance of the parametric random effects model in this case is consistent

with simulation results in Arellano and Bonhomme (2009). In the second model, the parametric
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random effects estimator is severely biased while the semiparametric sieve ML estimator exhibits

very minimal bias. The degree of state dependence is severely underestimated in the normal random

effects model.

7 Conclusion

This paper provides an important new identification result for nonparametric discrete choice panel

models with unobserved individual effects and lagged dependent variables. The argument extends

the special regressor method (Lewbel, 1998) to a nonparametric model. Contrary to other recent

work, no proxy variable is required. While the paper shows that the special regressor in the first

period can be used as a proxy, it is also shown that identification is possible even when this variable

fails as a proxy. A key novel idea in the paper is that the latent threshold underlying the discrete

outcomes, can be used implicitly as a proxy for the unobserved heterogeneity, even when all of the

covariates are independent of the unobserved individual effect. The identification argument justifies

the use of a semiparametric sieve MLE that generalizes the standard random effects probit or logit

estimator.
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A Appendix

A.1 Assumption 3.1

Consider the follow set of conditions.

Assumption A.1.

(i) Y is drawn from a first order Markov process conditional on (W,F ). In other words,

Pr(Y = y |W,F ) =

T∏
t=2

Pr(Yt = yt | Yt−1,W, F )Pr(Y1 = y1 |W,F )

(ii) for t ≥ 2, Pr(Yt = yt | Yt−1,W, F ) = Pr(Yt = yt | Yt−1,Wt, F )

(iii) (V2, . . . , VT ) ⊥⊥ (Y1, F ) | V1, X

Condition (i) allows for dynamics in the form of lagged dependent variables. Condition (ii)

imposes a common type of limited feed-back whereby innovations in period t cannot affect future

values of the covariates. Condition (iii) defines V as the special regressor. In the discussion in

Section 3 following the statement of Assumption 3.1, conditions (i) and (ii) are taken as given

and the discussion centers around condition (iii). As is common in the panel data literature, the

conditions in Assumption A.1 are imposed on the distribution of the dependent variables conditional

on (W,F ). However, Assumption 3.1 can also be derived from a first order Markov assumption on

(Y,W ) conditional on F . The following set of conditions is an alternative to Assumption A.1.

Assumption A.2.

(i) For t ≥ 2, fYt|W (t),Y (t−1),F = fYt|Wt,Yt−1,F

(ii) fXt|V (t),Y (t−1),X(t−1),F = fXt|V (t),X(t−1),F = fXt|X(t−1),F ,

(iii) fVt|V (t−1),Y (t−1),X(t−1),F = fVt|V (t−1),X(t−1),F = fVt|V (t−1), and

(iv) fY1|V1,X,F = fY1|V1,X1,F .

Assumption A.2 is more in line with the structure of the models of Kasahara and Shimotsu

(2009) while Assumption A.1 is similar to the model of Browning and Carro (2014).
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Proposition A.1. Assumption 3.1 holds under either Assumption A.1 or Assumption A.2.

Proof. First, under Assumption A.1,

Pr(Y |W ) =

∫ T∏
t=2

pt(Yt | Yt−1,W, F )Pr(Y1 = y1 |W,F )fF |WdF

=

∫ T∏
t=2

pt(Yt | Yt−1,Wt, F )Pr(Y1 = y1 |W,F )fF |WdF

=

∫ T∏
t=2

pt(Yt | Yt−1,Wt, F )fY1,F |WdF

=

∫ T∏
t=2

pt(Yt | Yt−1,Wt, F )fY1,F |V1,XdF

Next, under Assumption A.2,

fY,W =

∫
fY,W |F fFdF

=

∫ T∏
t=1

fYt|W (t),Y (t−1),F fXt|V (t),Y (t−1),X(t−1),F fVt|V (t−1),Y (t−1),X(t−1),F fFdF

=

∫ T∏
t=2

fYt|Wt,Yt−1,F fXt|X(t−1),F fVt|V (t−1)fY1|W1,F fX1|V1,F fV1|F fFdF

and

fW =

∫
fW |F fFdF

=

∫ T∏
t=1

fXt|V (t),X(t−1),F fVt|V (t−1),X(t−1),F fFdF

=

∫ T∏
t=2

fXt|X(t−1),F fVt|V (t−1)fX1|V1,F fV1|F fFdF
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Therefore,

Pr(Y |W ) =
fY,W
fW

=

∫ ∏T
t=2 fYt|Wt,Yt−1,F fXt|X(t−1),F fVt|V (t−1)fY1|W1,F fX1|V1,F fV1|F fFdF∫ ∏T

t=2 fXt|X(t−1),F fVt|V (t−1)fX1|V1,F fV1|F fFdF

=

∫ T∏
t=2

fYt|Wt,Yt−1,F

∏T
t=2 fXt|X(t−1),F fY1|W1,F fX1|V1,F fV1|F fF∫ ∏T

t=2 fXt|X(t−1),F fX1|V1,F fV1|F fFdF
dF

=

∫ T∏
t=2

fYt|Wt,Yt−1,F
fY1,X,V1,F

fX,V1

dF

=

∫ T∏
t=2

fYt|Wt,Yt−1,F fY1,F |X,V1
dF

Lastly, Proposition 3.1 provides sufficient conditions for condition (iii) in Assumption A.1. The

proof of Proposition 3.1 follows.

Proof of Proposition 3.1. Let Ṽt = (Vt, X
′
t1)′ and X̃t = Xt2. Then the density of Ṽ2, . . . , ṼT |

Ṽ1, X̃, F satisfies

fṼ2,...,ṼT |Ṽ1,X̃,F
=
fṼ ,X̃|F

fṼ1,X̃|F
(A.1)

=

∏T
t=2 fṼt|Ṽ (t−1),X̃(t),F fX̃t|Ṽ (t−1),X̃(t−1),F fṼ1,X̃1|F∫ ∏T

t=2 fṼt|Ṽ (t−1),X̃(t),F fX̃t|Ṽ (t−1),X̃(t−1),F fṼ1,X̃1|FdṼ2 . . . dṼT

=

∏T
t=2 fṼt|Ṽ (t−1),X̃(t)fX̃t|X̃(t−1),F fṼ1,X̃1|F∫ ∏T

t=2 fṼt|Ṽ (t−1),X̃(t)fX̃t|X̃(t−1),F fṼ1,X̃1|FdṼ2 . . . dṼT

=

∏T
t=2 fṼt|Ṽ (t−1),X̃(t)∫ ∏T

t=2 fṼt|Ṽ (t−1),X̃(t)dṼ2 . . . dṼT
,

where the third equality follows from conditions (i) and (ii) of the proposition. Since the final line

doesn’t depend on F , fṼ2,...,ṼT |Ṽ1,X̃,F
= fṼ2,...,ṼT |Ṽ1,X̃

, which is the desired result.

A.2 Theorem 4.1

First we state a lemma that extends some results in Hu and Schennach (2008).
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Lemma A.1. Suppose that A1, A2, B, C, and D are bounded linear operators such that A1 = BC

and A2 = BDC where C : L1(C)→ L1(B), D is a diagonal operator (multiplication by the function

δ), and B : L1(B)→ L∞(A) for A ⊆ R, B ⊆ R, and C ⊆ R. Suppose that B and the adjoint of C,

denoted C∗, are injective. Then A1 has a right inverse, A−1
1 , and B has a left inverse, B−1, and the

operator equivalence A2A
−1
1 = BDB−1 holds over the range of B. Moreover, P (M) = BIMB

−1

where for any M ∈ R [IMg](b) = 1(δ(b) ∈ M)g(b) is a projection-valued measure supported on

the spectrum σ = {δ(b) : b ∈ B}. Finally, A2A
−1
1 admits the unique decomposition BDB−1 =∫

σ µP (dµ).

The proof of this lemma is given below. The proof uses many of the same arguments as Hu and

Schennach (2008). The main difference between this result and what is shown in that paper is to

clarify that only the adjoint of C needs to be injective, bu not the adjoint of A1. Note that when

C is an integral operator, [Cg](b) =
∫
C k(b, c)g(c)dc, the adjoint is the operator defined on the dual

space L1(B)∗ = L∞(B) given by [C∗g](c) =
∫
B k(b, c)g(b)db. Thus, injectivity of C∗ requires that

if
∫
B k(b, c)g(b)db = 0 for almost all c ∈ C for a function g ∈ L∞(B) then g(b) = 0 for almost all

b ∈ B.

We now present the proof of Theorem 4.1.

Proof of Theorem 4.1. First, as shown in Section 3, for any values of y, v3, and x we have

[Ly1,y2;V1,x1,V2,x2,v3,x3g](v2) = Λy2;y1,V2,x2,FΛy1;V1,x,F

[Ly;V1,x1,V2,x2,v3,x3g] = Λy2;y1,V2,x2,F∆y3;y2,v3,x3,FΛy1;V1,x,F

Consider y1 = y11, y2 = y21, any y3, v3, and x3, and x1 and x2 = x20 (provided by Assump-

tion 3.6). By Assumption 3.7, Λy21;y11,V2,x20,F and Λ∗y11;V1,x,F
are both injective and therefore we

can apply Lemma A.1.

As noted by Hu and Schennach (2008), in the spectral decomposition given by Lemma A.1

the spectrum consists of the values of the function p3(y3 | y21, v3, x3, f) as f varies in F and

P (M) can be defined via the subspace S(M) := span{p2(y21 | y11, ·, x20, f) : f such that p3(y3 |

y21, v3, x3, f) ∈ M}. Therefore, the decomposition is unique up to (i) scaling of the eigenfunc-

tions, p2(y21 | y11, ·, x20, f), (ii) possible multiplicity of eigenvalues, p3(y3 | y21, v3, x
∗
3, f), and (iii)
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reordering of the eigenvalues and associated eigenvectors.

First, the scale of the eigenfunctions is fixed by Assumption 3.5 because these functions must be

equal to ` at v2 = v̄2.17 Second, since the eigenfunctions do not vary with y3 or v3, I can vary (y3, v3)

sufficiently to separately identify each eigenfunction (up to reordering) despite the possibility of

multiplicity of eigenvalues for a fixed (y3, v3) under Assumption 3.4. This is possible because the

functions p2(y21 | y11, ·, x20, f) do not depend on y3 or v3. Third, each of the eigenfunctions must

be equal to π(f), which is a one-to-one function on F , at v20, and, hence, no reordering of the

eigenvalues is possible.18

I have shown that Λy21;y11,V2,x20,F is identified and ∆y3;y21,v3,x3,F is identified for any y3, v3. And

Λy11;V1,x,F is also identified because Λy11;V1,x,F = Λ−1
y21;y11,V2,x20,F

Ly11,y21;V1,x1,V2,x20,v3,x3g](v2).

Next consider y2 = y21 with any value of x, y1, y3, and v3. Again, by Assumption 3.7,

Λy21;y1,V2,x2,F and Λ∗y1;V1,x,F
are both injective and therefore we can apply Lemma A.1. In the

unique decomposition provided by this lemma,

Ly1,y21,y3;V1,x1,V2,x2,v3,x3L
−1
y1,y21;V1,x1,V2,x2,v3,x3

= Λy21;y11,V2,x20,F∆y3;y21,v3,x3,FΛ−1
y21;y11,V2,x20,F

, (A.2)

the eigenvalues have already been identified in the previous step. Then, as in Step 1, the scale

of the eigenfunctions is fixed by Assumption 3.5 because these functions must be equal to ` at

v̄2 regardless of the value of x2. And again I can vary (y3, v3) sufficiently to separately identify

each eigenfunction (up to reordering) despite the possibility of multiplicity of eigenvalues for a

fixed (y3, v3) under Assumption 3.4. Lastly, reordering is not possible because ∆y3;y21,v3,x3,F is

already identified. That is, suppose I could obtain observationally equivalent models by swapping

the eigenfunctions corresponding to f1, f2 ∈ F . By Assumption 3.4, I can find (y3, v3) such that the

eigenvalues associated with f1 and f2 are distinct. Since ∆y3;y21,v3,x3,F is already identified, these

two eigenvalues are identified and hence their corresponding eigenfunctions are as well, contradicting

the observational equivalence. This again implies identification of Λy1;V1,x,F as well.

Finally, consider any value of y2 6= y21. We apply Lemma A.1 again. Since Λy1;V1,x,F doesn’t de-

17Formally, suppose p2 is observationally equivalent to some p∗2. Then p2(y21 | y11, ·, x20, f) = p∗2(y21 |
y11, ·, x20, f)s(f). Hence ` = limv2→v̄2 p2(y21 | y11, ·, x20, f) = limv2→v̄2 p

∗
2(y21 | y11, ·, x20, f)s(f) = `s(f). Since

` > 0, this implies that s(f) = 1.
18That is, to identify the eigenfunction associated with a particular f∗ ∈ F , I look for the eigenfunction that is

equal to π(f∗) at v2 = v20.
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pend on y2, it has already been identified so the equation [Ly1,y2;V1,x1,V2,x2,v3,x3g](v2) = Λy2;y1,V2,x2,FΛy1;V1,x,F

can be solved for Λy2;y1,V2,x2,F . Then, in the operator equivalence.

Ly;V1,x1,V2,x2,v3,x3L
−1
y1,y2;V1,x1,V2,x2,v3,x3

= Λy2;y1,V2,x2,F∆y3;y2,v3,x3,FΛ−1
y2;y1,V2,x2,F

(A.3)

we can solve for which implies that

∆y3;y2,v3,x3,F = Λ−1
y2;y1,V2,x2,F

Ly;V1,x1,V2,x2,v3,x3L
−1
y1,y2;V1,x1,V2,x2,v3,x3

Λy2;y1,V2,x2,F (A.4)

so ∆y3;y2,v3,x3,F is identified.

Last, identification of Λ2 and ∆ imply identification of p2 and p3, respectively. Identification of

Λ1 implies identification of fY1,F |V1,X(y1, f | v1, x). Hence fF |V1,X(f | v1, x) =
∑

y1∈Y1
fY1,F |V1,X(y1, f |

v1, x) is identified too. Then p1 is identified because fY1,F |V1,X(y1, f | v1, x) = p1(y1 | f, v1, x)fF |V1,X(f |

v1, x).

Proof of Lemma A.1. First, since B is injective it has a left inverse so that B−1A1 = C. Therefore,

A2 = BDB−1A1.

Next, by Lemma 1 in Hu and Schennach (2008), C−1 exists and is densely defined over L1(B).

Moreover, it can be extended to a bounded linear operator defined over L1(B), which is the domain

of B. Since B is injective, B−1 exists and is defined over the range of B. Therefore, A−1
1 = C−1B−1

defines a right inverse of A1 over the range of B. Therefore, A2A
−1
1 = BDB−1 defines an operator

equivalence over the range of B. Further, the operator equivalence can be extended to the closure

of the range of B, ¯r(B).

Next, P (M) = BIMB
−1 is projection-valued because B−1 is defined on the range of B and

therefore, for any M , P (M)P (M) = BIMB
−1
(
BIMB

−1
)

= BIMB
−1 = P (M). Note that if C−1

were not densely defined over L1(B), that is, if the range of C were not dense in L1(B), then

A2A
−1
1 = BDB−1 would hold only over the range of A1, which is not dense in the range of B,

and therefore, P (M) would not be projection-valued when restricted to the domain over which

this equivalence holds. This is why it is crucial that C∗ is injective. Lastly, BDB−1 =
∫
σ µP (dµ),

following the same argument as in the proof of Theorem 1 in Hu and Schennach (2008).
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Since ¯r(B) is a closed linear subspace of a Banach space, it is also a Banach space. Since

the spectrum σ is bounded, BDB−1 is a bounded linear operator. Therefore, Theorem XV.4.5 in

Dunford and Schwartz (1971) can be applied to conclude that the decomposition is unique.

A.3 The discrete case

Suppose that Vt = {vt,1, . . . , vt.Kt} for each t and F = {1, . . . , L}. Then we could define two K2×K1

matrices, (p(y1, y2 | v1k, x1, v2j , x2, v3, x3))j=1,...,K2,k=1,...,K1 and (p(y | v1k, x1, v2j , x2, v3, x3))j=1,...,K2,k=1,...,K1 .

Suppose that Kt ≥ L for t = 1, 2 and let Ly1,y2;V1,x1,V2,x2,v3,x3 and Ly;V1,x1,V2,x2,v3,x3 represent any

J × J submatrices.

Then by Assumption 3.7,

p(y | v1k, x1, v2j , x2, v3, x3)

=

L∑
l=1

p3(y3 | y2, v3, x3, l)p2(y2 | y1, v2j , x2, l)p1(y1 | v1k, x, l)Pr(F = l | V1 = v1k, X = x)

And, therefore,

Ly;V1,x1,V2,x2,v3,x3 = Λy2;y1,V2,x2,F∆y3;y2,v3,x3,FΛy1;V1,x,F

where Λy1;V1,x,F is the L × L submatrix of the L × K1 matrix (p1(y1 | v1k, x, l)Pr(F = l | V1 =

v1k, X = x))l=1,...,L,k=1,...,K1 , Λy2;y1,V2,x2,F is the L × L submatrix of the K2 × L matrix (p2(y2 |

y1, v2j , x2, l))j=1,...,K2,l=1,...,L, and ∆y3;y2,v3,x3,F = diag(p3(y3 | y2, v3, x3, l), l = 1, . . . , L). We can

then obtain the following matrix equation by summing the above equation over y3 ∈ {0, 1}.

Ly1,y2;V1,x1,V2,x2,v3,x3 = Λy2;y1,V2,x2,FΛy1;V1,x,F (A.5)

If the matrices Λy2;y1,V2,x2,F and Λy1;V1,x,F are nonsingular then we obtain the matrix equation

Ly;V1,x1,V2,x2,v3,x3L
−1
y1,y2;V1,x1,V2,x2,v3,x3

= Λy2;y1,V2,x2,F∆y3;y2,v3,x3,FΛ−1
y2;y1,V2,x2,F

(A.6)

The role of Assumptions 3.4, 3.5, and 3.6 may be more clear in the discrete case. The above equa-
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tion represents an eigenvalue decomposition of the observed matrix Ly;V1,x1,V2,x2,v3,x3L
−1
y1,y2;V1,x1,V2,x2,v3,x3

.

The eigenvalues identify p3(y3 | y2, v3, x3, l), l = 1, . . . , L. Assumptions 3.4 ensures that these L

eigenvalues are distinct, at least for y2 = 1 but the order of the eigenvalues is not uniquely deter-

mined. Thus, each eigenvector is equal to the vector s(l)p2(y2 | y1, v2j , x2, l), k = . . . for some l. In

other words, the matrix Λy2;y1,V2,x2,F is identified up to multiplication on the right by PQ where

P is a diagonal matrix and Q is a matrix that changes the order of the columns. Equation (A.5)

then implies that Λy1;V1,x,F is identified up to multiplication on the left by QP−1. However, note

that ι′Λy1;V1,x,F = L′y1;V1,x
, where ι is a vector of ones. Therefore, ι′Λy1;V1,x,F = ι′QP−1Λy1;V1,x,F .

Since ι′Q = ι′ and Λy1;V1,x,F is nonsingular, this implies that P = I. Therefore, it is clear that in

the discrete case 3.5 is unnecessary.

Now, in place of Assumption 3.6, suppose that for some j and some x20, p2(1 | 0, v2j , x20, 1) <

p2(1 | 0, v2j , x20, 2) < . . . < p2(1 | 0, v2j , x20, L).19 Going back to the eigendecomposition in

equation (A.6), taking y1 = 0, y2 = 1, the elements in the jth row of Λ1;0,V2,x20,F and Λ1;0,V2,x20,FQ

must both be in rank order, which implies that Q = I. Therefore, Λ1;0,V2,x20,F , ∆y3;1,v3,x3,F , and

Λ0;V1,x,F are identified.

Because Λ0;0,V2,x2,F + Λ1;0,V2,x2,F = ιι′ this also implies that Λ0;0,V2,x2,F is identified. Applying

equation (A.6) for y1 = 0, y2 = 0, identification of ∆y3;0,v3,x3,F follows.

If we apply equation (A.6) for x2 6= x20 and/or y1 6= 0, the order of the eigenvalues is already

identified because p3(y3 | y2, v3, x3, l) does not vary with x2 or y1. Therefore, the eigenvectors are

identified up to scale and the equation ι′Λy1;V1,x,F = L′y1;V1,x
can again be used to resolve the scale.

A.4 A static model

Consider the following assumption.

Assumption A.3. For each t = 1, . . . , T there exists t′ and t′′ such that

(i) p(Yt, Yt′ , Yt′′ |W ) =
∫
pt(Yt | Vt, X1, F )pt′(Yt′ | Vt′ , X2, F )pt′′(Yt′′ | Vt′′ , X, F )fF |Vt′′ ,XdF ,

(ii) support(Wt,Wt′ ,Wt′′) = Vt × Vt′ × Vt′′ × support(Xt, Xt′ , Xt′′),

(iii) the density fF |Vt′′ ,X is bounded,

19We can do this because we are assuming the points in the support, F , are known to be the integers 1, . . . , L. If
instead we maintain a normalization like that in Assumption 3.6 then these support points can be identified.
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(iv) for any xt ∈ Xt, Pr (∃f∗ ∈ F s.t. pt(Yt | Vt, xt, f∗) = pt(Yt | Vt, xt, f)) < 1 for almost all f ∈

F ,

(v) for each xt′ ∈ Xt′, there exists a (known) v̄t′ ∈ R∪{−∞,∞} and a known 0 < ` ≤ 1 such that

limvt′→v̄t′ pt′(yt′1 | vt′ , xt′ , f) = ` for all f ∈ F and if |v̄t′ | < ∞ then v̄t′ ∈ Vt′, if v̄t′ = ±∞

then Vt′ is unbounded from above or below, respectively,

(vi) there exists wt′0 = (vt′0, xt′0) ∈ Wt′ and a known one-to-one function, π : R → [0, 1],

with π(R) = [0, 1] such that limwt′→wt′0 pt′(yt′1 | wt′ , f) = π(f) for all f ∈ F . X =

Support(Xt, Xt′ , Xt′′) satisfies the condition that for each xt ∈ Xt, there exists xt′′ ∈ Xt′′

such that (xt, xt′0, xt′′) ∈ X .

(vii) for each yt′′ ∈ Yt′′ and x ∈ X , if ψ ∈ L∞(F) and
∫
F fYt′′ ,F |Vt′′ ,X(yt′′ , f | vt′′ , x)ψ(f)df = 0 for

all vt′′ ∈ Vt′′ then ψ ≡ 0.

(viii) For each yt′ ∈ Yt′ and each xt′ ∈ Xt′, if ψ ∈ L1(F) and
∫
F pt′(yt′ | vt′ , xt′ , f)ψ(f)df = 0 for

all vt′ ∈ Vt′ then ψ ≡ 0.

These conditions are very similar to the assumptions of the dynamic model in the paper. The

main advantage is that in the static model with T > 3, the conditional independence assumption

(condition (i)) may hold for triples other than (t, t′, t′′) = (1, 2, 3). Then Xt does not need to be

excluded from the conditional probability pτ for all τ 6= t, though the same is not true for Vt.

One apparent difficulty is in applying the normalization (condition (vi)). Unless the conditional

probabilities pτ are stationary (i.e., do not depend on τ), it will typically only be plausible to

assume the normalization for a particular t′, say t′ = 1. Then, in order to identify pt for a given t,

the components of X that affect Yt (conditional on F, Vt) must be distinct from those that affect

Y1 (conditional on F, V1).

Theorem A.1. Under Assumption A.3, the choice probabilities, pt, pt′ , and pt′′, are identified as

is the distribution fF |Vt′′ ,X .

Proof. The proof is identical to that of Theorem 4.1 with t = 3, t′ = 2 and t′′ = 1.

This result follows the same proof as Theorem 4.1, starting with forming operator equiva-

lence (4.6) where Y1, Y2, Y3 are replaced by Yt′′ , Yt′ , and Yt, respectively. The identification argu-
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ment could be modified when T > 3 in order to show identification of the static model under weaker

conditions than those of Assumption A.3. This could be done, for example, by deriving operator

equivalence (4.6) for other triples (Yt1 , Yt2 , Yt3) where {t1, t2, t3}∩{t, t′, t′′} 6= ∅ in order to get more

information about pt, pt′ , and pt′′ . A full development of this model is beyond the scope of this

paper.

A.5 More lags

To demonstrate the possibility of identification with more than one lagged dependent variable I

provide here an example where there are two lags and T = 5. Suppose that Pr(Yt | Y (t−1),W, F ) =

Pr(Yt | Yt−1, Yt−2,W, F ).

Take a function ω : V2 → R such that 0 < ω(v3) for all v3 ∈ V2 and supv3∈V3
ω(v3) < ∞ and

define the operators

[L1g](v3) =

∫
V1

ω(v3)p(y1, y2, y3 | v1, v2, v3, x1, x2)g(v1)dv1

[L2g](v3) =

∫
V1

ω(v3)p(y | v1, v2, v3, v4, v5, x)g(v1)dv1

Then define the operators Λ2 : L1
bdd(F)→ L1

bdd(V3) such that

[Λ2g](v3) =

∫
F
ω(v3)p3(y3 | y2, y1, v3, x3, f)g(f)df,

Λ1 : L1
bdd(V1)→ L1

bdd(F) such that

[Λ1g](f) =

∫
V1

fY2,Y1,F |V1,X(y2, y1, f | v1, x)g(v1)dv1,

and the diagonal operator ∆ : L1
bdd(F)→ L1

bdd(F) such that

[∆g](f) = p5(y5 | y4, y3, v5, x5, f)p4(y4 | y3, y2, v4, x4, f)g(f).

Then under sufficient injectivity conditions, we obtain L2 = Λ2∆Λ−1
2 . Suppose that p3(y3 |

0, 0, v30, x30, f) = π(f). Then, following the proof of Theorem 4.1, we can identify p3(y3 | 0, 0, v30, x30, f),

fY2,Y1,F |V1,X(0, 0, f | v1, x0), and p5(y5 | y4, y3, v5, x5, f)p4(y4 | y3, 0, v4, x4, f). For y1 = 1, we have

41



already identified ∆ so identification of Λ2 and Λ1 follows readily.

However, for y2 = 1, ∆ has not been identified in the first step. This is why the identification

argument in Theorem 4.1 fails, and why T ≥ 5 is needed, when there are two lags. Instead, define

[Λ̃2g](v3) =

∫
F
ω(v3)p4(y4 | y3, y2, v4, x4, f)p3(y3 | y2, y1, v3, x3, f)g(f)df,

and

[∆̃g](f) = p5(y5 | y4, y3, v5, x5, f)g(f).

Then ∆̃ was identified in the first step since
∑

y5
p5(y5 | y4, y3, v5, x5, f)p4(y4 | y3, y2, v4, x4, f) =

p4(y4 | y3, y2, v4, x4, f). Moreover, under sufficient injectitivity conditions, L2 = Λ̃2∆̃Λ̃−1
2 . Apply-

ing this spectral decomposition with y2 = 1, the eigenvalues have already been identified so no

additional normalization is needed and identification of Λ̃2 follows. Then p3(y3 | 1, y1, v3, x3, f) =∑
y4
p4(y4 | y3, 1, v4, x4, f)p3(y3 | 1, y1, v3, x3, f).

A.6 Other outcomes

Suppose T = 3 and let fY ∗,Y |W,X∗ denote the joint distribution of Y ∗ and Y = (Y1, Y2, Y3) condi-

tional on W and X∗, where X∗ is an additional vector of covariates. I make the follow assumption

in place of Assumption 3.1

Assumption A.4. For all y∗ ∈ Y∗, y ∈ Y, (w, x∗) ∈ support(W,X∗),

fY ∗,Y |W,X∗(y | w, x∗) =

∫
fY ∗|Y,W,X∗,F (y∗ | y, w, x∗, f)

T∏
t=2

pt(yt | yt−1, vt, xt, f)fY1,F |V1,X(y1, f | v1, x)df

The important part of this assumption is that Y is independent of X∗ conditional on W and

F . Because of this, the assumption implies Assumption 3.1. Therefore, p2, p3 and fY1,F |V1,X are

identified by Theorem 4.1.

Assumption A.5. For all y∗ ∈ Y∗, y ∈ Y, (w, x∗) ∈ support(W,X∗),

fY ∗|Y,W,X∗,F (y∗ | y, w, x∗, f) = fY ∗|Y,V3,X,X∗,F (y∗ | y, v3, x, x
∗, f)
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This assumption allows for Y ∗ to depend on some, or all, components of X conditional on X∗, Y,

and F , but not on V1 or V2. Next, define the operators

[L3g](v2) =

∫
V1

fY ∗,Y |W,X∗(y
∗, y | v1, v2, v3, x, x

∗)g(v1)dv1

[∆∗g](f) = fY ∗|Y,V3,X,X∗,F (y∗ | y, v3, x, x
∗, f)p3(y3 | y2, v3, x3, f)g(f)

Following the same arguments as in the text, under Assumptions A.4 and A.5,

L3 = Λ2∆∗Λ1

Then, under Assumption 3.7, we can solve for ∆∗ = Λ−1
2 L3Λ−1

1 . This implies that fY ∗|Y,W,X∗,F (y∗ |

y, w, x∗, f)p3(y3 | y2, v3, x3, f) is identified. If p3(y3 | y2, v3, x3, f) > 0 then fY ∗|Y,W,X∗,F (y∗ |

y, w, x∗, f) is identified.
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