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B Details for examples in Section 2

B.1 m∗-dependence of idiosyncratic errors

The rank condition on the factor loading matrix in Theorem 2.2 is stronger than necessary. The
following theorem states that the same conclusion follows under a weaker rank condition.

Theorem B.1. Suppose the errors ui in the model of equation (2) in Section 2 satisfym∗-dependence

for m∗ > 0 and m ≥ 2(k + m∗) + 1. Then ∆ and AΦA′ are identified based on the moment con-

ditions (3) if Φ is positive definite and the following submatrices of A are full rank.

A1,...,k;1,...,k

Aj+m∗+1,...,j+m∗+k;1,...,k, 1 ≤ j ≤ m− 2k − 2m∗(
A1,...,j−(m−2k−2m∗);1,...,k

Aj+m∗+1,...,m−k−m∗;1,...,k

)
, m− 2k − 2m∗ < j ≤ m− 2k − 2m∗ + k

Am−k+1,...,m;1,...,k

Aj−m∗−k,...,j−m∗−1;1,...,k, 2k + 2m∗ + 1 ≤ j ≤ m(
Ak+m∗+1,...,j−m∗−1;1,...,k

A(m−2k−2m∗)+j,...,m;1,...,k

)
, 2k + 2m∗ + 1− k ≤ j < 2k + 2m∗ + 1

This weaker rank condition allows, for example, for several measurements to only load on one
particular factor. However, it does not allow, for example, a factor loading structure where only
measurements with j within 2m∗ of each other load on a particular factor. When j denotes time,
this suggests that the model is poorly identified if the strength of one or more factors diminishes
greatly over time. Identification is possible in this case though it would require a sufficiently large
number (relative to m∗) of time periods that load on each dimension of Fi and, as a result, would
require m > 2(k +m∗) + 1.

Proof. The proof consists of demonstrating identification of each element of the matrix ∆ from
equations of the form (5). Because ∆ is symmetric I restrict attention to δj1j2 for j1 ≤ j2. If
j2 − j1 ≥ m∗ + 1 then δj1j2 = 0 by assumption.

First, consider any j1 ≤ j2 such that j1 ≤ m − 2k − 2m∗ and j2 ≤ m − k −m∗. Let Σ− =

Σj1,m−k+1,...,m;j2,j1+m∗+1,...,j1+m∗+k. Then δj1j2 is the only nonzero element of the corresponding
submatrix of ∆ because j2 + (m∗ + 1) ≤ m− k + 1 and j1 + m∗ + k + (m∗ + 1) ≤ m− k + 1.
The corresponding equation can be solved for this parameter becauseAj1+m∗+1,...,j1+m∗+k;1,...,k and
Am−k+1,...,m;1,...,k are full rank.

Second, consider j1 ≤ j2 such that k + m∗ + 1 ≤ j1 and 2k + 2m∗ + 1 ≤ j2. Let
Σ− = Σj2−m∗−k,...,j2−m∗−1,j1;1,...,k,j2 . Then δj1j2 is the only nonzero element of the corresponding
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submatrix of ∆ because k + (m∗ + 1) ≤ j1 and k + (m∗ + 1) ≤ j2 −m∗ − k. The corresponding
equation can be solved for this parameter because A1,...,k;1,...,k and Aj2−m∗−k,...,j2−m∗−1;1,...,k are full
rank.

Third, consider j1 ≤ j2 such that j1 ≤ m − k − m∗ and k + m∗ + 1 ≤ j2. Let Σ− =

Σ1,...,k,j1;j2,m−k+1,...,m, noting that j2 ≤ j1 + m∗ implies that j2 ≤ m − k + 1. Then δj1j2 is the
only nonzero element of the corresponding submatrix of ∆ because j1 + (m∗ + 1) ≤ m − k + 1

and k + (m∗ + 1) ≤ j2. The corresponding equation can be solved for this parameter because
A1,...,k;1,...,k and Am−k+1,...,m;1,...,k are full rank.

If m ≥ 3m∗ + 3k + 1 then this completes the proof. Otherwise, two cases remain – (a)
m− 2k− 2m∗ < j1 < k+m∗+ 1 and j2 < k+m∗+ 1 and (b) m− k−m∗ < j1 < 2k+ 2m∗+ 1

and j2 < 2k + 2m∗ + 1.
For (a), proceed iteratively, starting with j1 = m− 2k − 2m∗ + 1. Let

Σ− = Σj1,m−k+1,...,m;j2,1,j1+m∗+1,...,m−k−m∗ , or Σ− = Σj1,m−k+1,...,m;j2,1 if k = 1.1 The former is a
(k+ 1)× (k+ 1) matrix because m−k−m∗− (j1 +m∗+ 1) + 1 = k−1. Also, δj1j2 , and δ1j1 are
the only nonzero elements of the corresponding submatrix of ∆ because j2+(m∗+1) ≤ m−k+1

and m− k−m∗ + (m∗ + 1) = m− k+ 1. But δ1j1 was identified in the first step above. The cor-
responding determinantal equation can be solved because A1,j1+m∗+1,...,m−k−m∗;1,...,k, A1,...,k;1,...,k,
and Am−k+1,...,m;1,...,k are full rank.

Next, for j1 = m − 2k − 2m∗ + 2, let Σ− = Σj1,m−k+1,...,m;j2,1,2,j1+m∗+1,...,m−k−m∗ , or Σ− =

Σj1,m−k+1,...,m;j2,1,...,k if k ≤ 2. The former is a (k+1)×(k+1) matrix becausem−k−m∗−(j1+

m∗ + 1) + 1 = k− 2. Also, δj1j2 , δ1j1 and δ2j1 are the only nonzero elements of the corresponding
submatrix of ∆ because j2 + (m∗ + 1) ≤ m− k + 1 and m− k −m∗ + (m∗ + 1) = m− k + 1.
But δ1j1 was identified in the first step above and δ2j1 was either identified in that step too (if
m ≥ 2k + 2m∗ + 2) or it was identified in the argument in the paragraph immediately preceeding
this one (if m < 2k+ 2m∗+ 2). The corresponding determinantal equation can be solved because
A1,2,j1+m∗+1,...,m−k−m∗;1,...,k, A1,...,k;1,...,k, and Am−k+1,...,m;1,...,k are full rank.

We can continue for j1 = m−2k−2m∗+i by taking Σ− = Σj1,m−k+1,...,m;j2,1,...,i,j1+m∗+1,...,m−k−m∗ ,
or Σ− = Σj1,m−k+1,...,m;j2,1,...,k if k ≤ i. The former is a (k + 1) × (k + 1) matrix because
m−k−m∗−(j1+m∗+1)+1 = k−i. Also, δj1j2 , and δ1j1 , . . . , δij1 are the only nonzero elements
of the corresponding submatrix of ∆ because j2+(m∗+1) ≤ m−k+1 andm−k−m∗+(m∗+1) =

m−k+1. But it can be shown that δ1j1 , . . . , δij1 have been identified in a previous step. The corre-
sponding determinantal equation can be solved because A1,...,i,j1+m∗+1,...,m−k−m∗;1,...,k, A1,...,k;1,...,k,
and Am−k+1,...,m;1,...,k are full rank.

For (b), I proceed iteratively as with (a). Let j1 = 2k + 2m∗ + 1 − i, starting with i = 1 with

1Recall that we only need to consider the case where j1 ≤ j2 < j1+m∗+1 so j2, 1, j1+m∗+1, . . . ,m−k−m∗

are distinct integers.
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Σ− = Σj1,k+m∗+1,...,j2−m∗−1,m−i+1,...,m;1,...,k,j2 , or Σ− = Σj1,m−k+1,...,m;1,...,k,j2 if k ≤ i.

B.2 Block diagonal ∆

The structure of A and ∆ in Theorem 2.3 satisfies the groupwise row deletion property. However,
when some Ag are not full rank, more groups (so G > 3) will be needed in order for the groupwise
row deletion property to be satisfied. Suppose, for example, that k = 2 and rank(A1) = 1. Then
G = 4 is sufficient if rank(Ag) = 2 for g = 2, 3, 4. However, suppose rank(A2) = 1 as well.
Then the groupwise row deletion property is satisfied for G = 4 if and only if rank((A′1, A

′
2)
′) =

rank(A3) = rank(A4) = 2. If groups 1 and 2 both load only on the first factor, for example, then
the property can only be satisfied if G ≥ 5. More generally, if the factor loading matrix A has a
block structure, it cannot mirror the block structure of ∆.

Proof of Theorem 2.4. Consider any indices 1 ≤ j1 ≤ j2 ≤ m. If δj1j2 6= 0 then both correspond-
ing measurements are in the same group, g0. By the groupwise row deletion property there are two
distinct sets of k rows in A that each form nonsingular k× k submatrices of A, A1 = A`1,...,`k;1,...,k

and A2 = A`k+1,...,`2k;1,...,k. These rows correspond to groups g1, . . . , g2k where gj 6= g0 for any j
and gj 6= gj′ for any 1 ≤ j ≤ k and k + 1 ≤ j′ ≤ 2k. Therefore, the only nonzero element of
∆− = ∆j1,`1,...,`k;j2,`k+1,...,`2k is δj1j2 . Let Σ− = Σj1,`1,...,`k;j2,`k+1,...,`2k . Then det(Σ− − ∆−) = 0

and this equation can be solved for δj1j2 because A1ΦA
′
2 is nonsingular.

B.3 Simultaneous equations system

Section 2.2.3 briefly describes an identification strategy for the model

Mi = HMi + ÃFi + ũi

when H is block diagonal. The following example demonstrates identification in a case where H
is not block diagonal. Suppose that k = 1, m = 5, and

H =


0 0 0 0 0

0 0 0 0 0

0 0 0 ρ34 0

0 0 ρ43 0 0

0 ρ52 ρ53 0 0


Further, suppose V ar(ũi) is diagonal. Then some tedious algebra shows that ∆ has 6 zero elements
δjk with j ≤ k. They are δ1k for k = 2, . . . , 5, δ23 and δ24. The remaining elements of ∆ are
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nonzero. It can then be shown that this model is identified if a1, a2 and either a3 or a4 are nonzero.
The proof entails finding a system of 9 determinantal equations that can be solved for the 9 nonzero
elements of ∆ under this condition on A. Rank conditions on A can also be stated in terms of Ã.
In particular, it is satisfied in this case if ã1 6= 0, ã2 6= 0, and either ã3/ã4 6= ρ34 or ã3/ã4 6= ρ−143 .

C A model of human capital development

Consider a model where the m measurements consist of mt measurements in period t for t =

1, . . . , T , Fi = (F ′i1, . . . , F
′
iT )′ where dim(Fit) = kt, and measurements in period t only load on

factors Fit. Such a model can be written as

Mijt = ψ′jtFit + uijt

Theorem 2.5 can be used to study identification in this class of models. I now apply this theorem
for two cases of this model.

First, suppose Cov(uijt, uij′t′) = 0 for all j, j′ and t, t′. In the stacked representation, this
means that ∆ = V ar(ui) is diagonal. Then suppose mt ≥ kt + 1 and let At = (ψ1t, . . . , ψmtt)

′ for
each t. For each j, t let A(j,t)

1 denote a kt × kt submatrix of At and let A(j,t)
2 denote kt rows from

the matrix A = diag(A1, . . . , AT ) excluding any rows corresponding to A(j,t)
1 . If A(j,t)

1 ΦtA
(j,t)′
2 is

full rank for each t, where Φt represents the kt rows of Φ corresponding to Fit, then the conditions
of Theorem 2.5 are satisfied and AΦA′ is identified.

Second, suppose that for j = 1, . . . , kt, Cov(uijt, uij′t) = 0 for all 1 ≤ j ≤ kt, 1 ≤ j′ ≤ mt

but Cov(uijt, uij′t) is unrestricted for kt < j, j′ ≤ mt. In addition, let Cov(uijt, uij′t′) = 0 for
all j, j′ when t 6= t′. This model is relevant, for example, if measurements kt + 1, . . . ,mt were
all administered on the same day while measurements 1, . . . , kt were administered on different
days. In that case, this covariance structure represents a “day of test” effect. Similarly, if there
are kt measurements that do not depend on classroom instruction then this allows for classroom
or teacher effects to cause dependence across uijt for the remaining measurements. Let A(1)

t =

(ψ1t, . . . , ψktt)
′. The conditions of Theorem 2.5 can be verified in this model if for each t there

is a kt × k matrix A(t)
2 consisting of kt rows from A that do not correspond to period t such that

A
(1)
t ΦtA

(t)′
2 is full rank.

Next, this model provides an example of how restrictions on the relationship among different
elements of Φ can also be helpful in resolving the scale. Suppose, for example that T = 2. Let
Φ11,Φ21,Φ22 denote the corresponding blocks of Φ in partitioned form. If Fi2 = TFi1 for a k2×k1
matrix T , then Φ21 = TΦ11. Along with normalizations of some of the elements of the matrix T ,
this type of restriction can be combined with other scale normalizations to avoid the need for scale
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normalizations on the variances or factor loadings corresponding to Fi2. Indeed, suppose the first
k rows of A are A1,...,k = diag(A1, A2) where A1 and A2 are k1 × k1 and k2 × k2 lower triangular
matrices so that AL is identified and

A1,...,kL =

(
A1 0

0 A2

)(
L11 0

TL11 L22

)

To simplify the argument, suppose that A1 or Φ11 is known through normalizations. Then A2T

is identified. If, in addition, A2 is diagonal, k2 ≤ k1, and diag(T ) is known then A2 and T are
identified. Indeed, in that case all of A and Φ are identified. A version of this result has been used
in a model of human capital formation (Agostinelli and Wiswall, 2016, 2017).

D An Instrumental Variables Formulation

Some of the results derived in Sections 2.1 and 2.2 can also be derived from an instrumental
variables model. If the factor loading matrix A satisfies the row deletion property then, for any j,
the system of equations (2) can be written as

Mij = ajFi + uij

M
(1)
i = A1Fi + ui(1) (D.1)

M
(2)
i = A2Fi + u

(2)
i

M
(3)
i = A3Fi + u

(3)
i

where A1 and A2 are the two distinct sets of k rows from A guaranteed by row deletion, and A3

consists of the remaining rows. SinceA1 is nonsingular, Fi can be solved for in the second equation
and plugged into the first, producing the reduced form equation,Mij = ajA

−1
1 M

(1)
i +uij−A−11 u(1).

The reduced form parameter ajA−11 is identified if u(2)i is uncorrelated with uij and u
(1)
i since

Cov(M
(1)
i ,M

(2)
i ) = A1ΦA

′′
2 is nonsingular. In that case, ajA−11 = Cov(Mij,M

(2)
i )

(
Cov(M

(1)
i ,M

(2)
i )
)−1

.

This is the formula for a just-identified instrumental variables regression ofMij onM (1)
i usingM (2)

i

as instruments. The additional measurements,M (3)
i , can serve as additional instruments but are not

needed for identification.
This argument provides some intuition for the row deletion property and the other rank condi-

tions used in the results in Sections 2.1 and 2.2. These conditions can be interpreted as a require-
ment that there is enough variation in the measurements that one set of measurements can be used
to proxy the factors while there are enough remaining measurements to serve as instruments. It
becomes clear then when the order condition, m ≥ 2k + 1, is not sufficient. For example, if k = 2
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and m = 5, identification fails if all but one Mij depend only on the first dimension of Fi because
in that case the measurements do not contain enough signal on the second factor to serve as both
proxy and instrument.

The link between the factor analysis model and IV regression is discussed in Hagglund (1982),
who suggests two stage least squares as a computationally simpler estimator compared to the max-
imum likelihood estimator of the factor model. Instrumental variables estimation of factor models
has also been considered in Madansky (1964) and Pudney (1982). This link is useful because it
demonstrates identification under even weaker conditions on ∆. Indeed note that Theorem 2.1, for
example, requires that uij is also uncorrelated with u(1)i . Furthermore, the above IV argument does
not even require Fi to be uncorrelated with u(1)i . On the other hand, it is not always obvious how
to cobble together identification results on ajA−11 and V ar(uij −A−11 u

(1)
i ) for different j to obtain

identification of A, Φ, ∆ or other parameters of interest.
Consider, for example, the m = 4, k = 1 model previously studied where δ12 and δ34 are

nonzero. I argued above that ∆ is not identified in this model. Note, however that a21/a11 is iden-
tified from an IV regression with Mi2 as the dependent variable, Mi1 as the endogenous regressor
andMi3 orMi4 as the instrument. Likewise, a41/a31 is identified from an IV regression. This could
incorrectly be interpreted as showing that the model is identified “up to scale”. However, while
a11 = 1 is a scale normalization, also imposing that a31 = 1 implies the substantive restriction that
a31 = a11. While the problem is easy to see in this simple model, analogous problems that may
arise in more complex models when applying an IV strategy may be less obvious.

On the other hand, the identification strategy used in the previous results in this paper is useful
in some cases where an IV strategy is not sufficient. Consider a model with k = 1 and m∗-
dependent errors for m∗ = 1. I show above that this model is identified if m = 5 and a11, a31, and
a51 are nonzero. It is not possible, however, to identify a21/aj1 for any j 6= 2 from an IV regression
in this case. For any j, there must be a third measurement, Mij′ , such that uij is uncorrelated with
ui2 and uij′ . If uij is uncorrelated with ui2 then j > 3. For uij to also be uncorrelated with uij′

for j > 3 would require j′ ≥ 6. Thus identification arguments for factor models based on the IV
formulation may lead to stronger conditions than necessary.

E Identification of the factor distribution

I first state a theorem due to theorem due to Ben-Moshe (2018). Consider the model

M̃i = ÃF̃i + ũi. (E.1)
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LetMi1 denotem1 < m components ofMi and letMi2 denote the remainingm−m1 components.
Let Ã1 and Ã2 denote the corresponding partition of the matrix Ã and let ũi1 and ũi2 denote the
corresponding partition of the vector ũi.

Theorem E.1. (Ben-Moshe, 2018) Suppose that

(i) F̃i and ũi are independent and E(ũi1 | ũi2) = 0,

(ii) rank(Ã1) = rank(Ã2) = k, and

(iii) |E(F̃i)| <∞ and E(exp(ιF̃ ′iv)) 6= 0 for all v ∈ Rk, where ι =
√
−1.

Then, if Ã is a known matrix the distribution of F̃i is identified.

Under the conditions of Theorem 2.1 there are natural partitions of Mi, A, and ui. Indeed,
both conditions (b) and (c) require two distinct sets of k components of the vector Mi where the
corresponding rows of A consist of two rank k matrices and Cov(ui1, ui2) = 0. Consider any
such partition and let M̃i1 and M̃i2 denote the two length k vectors of components of Mi and let
M̃i = (M̃ ′

i1, M̃
′
i2)
′. Let A1 and A2 denote the corresponding rows of A, let ũi1 and ũi2 denote

the corresponding components of ui and let ũi = (ũ′i1, ũ
′
i2)
′. Suppose that the assumption that

Cov(ui1, ui2) = 0 and the maintained assumption that Cov(Fi, ũi) = 0 are strengthened to mean
independence and independence, as stated in condition (i) of the above theorem. Further, suppose
that |E(Fi)| <∞ and E(exp(ιF ′iv)) 6= 0 for all v ∈ Rk.

The above theorem still cannot be applied because, under the conditions of Theorem 2.1, A is
not identified. However, identification of AΦA′ implies identification of A2A

−1
1 . Therefore, define

F̃i = A1Fi and Ã1 = Ik and Ã2 = A2A
−1
1 . Then the conditions of the above theorem are satisfied

and, hence, the distribution of A1Fi is identified.

F Details of simulation

In the simulations reported in Section 3., the data was generated by the model of equation (13)
with εij ∼iid N(0, 1) for each j. In the first model, dX = 1 and Fi = (Xi, θi1, θi2)

′ ∼iid N(0,Φ)

where

Φ =

 1 0 0.5

0 1 0

0.5 0 1


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The coefficient values used were

β =


0

0

1

1

1

 , α =


1 0

1 α22

0 1

0.5 1

1 0.5


If α22 = 0 then β is not identified. Two values of α22 were used – 0.2 and 0.5.

Let Y1 = (Y11, . . . , Yn1)
′ and similarly stack the other variables into n×1 vectors Y2, . . . , Y5, X .

The coefficient β3 can be estimated via two stage least squares. Let

ψ̂2sls = (X̃ ′Z̃(Z̃ ′Z̃)−1Z̃ ′X̃)−1X̃ ′Z̃(Z̃ ′Z̃)−1Z̃ ′Ỹ

where Ỹ = Y ′3 , X̃ = (ιn, X, Y1, Y2), and Z̃ = (ιn, X, Y4, Y5) and ιn denotes a vector of n
ones.Then β̂2sls

3 is the second element in the coefficient vector ψ̂2sls.
This model can be estimated via maximum likelihood if sufficient normalizations are imposed.

Let γ denote the unrestricted parameters. Then let

Σ(γ) = A(γ)Φ(γ)A(γ)′ + ∆(γ)

where

A(γ) =



1 0 0

0 1 0

0 α21 α22

β3 0 1

β4 α41 α42

β5 α51 α52


, Φ(γ) =

 φx φxθ1 φxθ2

φxθ1 φθ1 φθ1θ2

φxθ1 φθ1θ2 φθ2



and ∆(γ) = diag(0, δ1, δ2, δ3, δ4, δ5). The log likelihood function is given by `(γ) ∝ − ln(det(Σ(γ)))−
trace(Σ(γ)−1Σ̂) where Σ̂ is the sample covariance matrix of (Xi, Yi1, . . . , Yi5)

′. Then β̂mle3 is the
corresponding component of γ̂ = arg maxγ `(γ).

In the second model simulated, Xi = (Xi1, Xi2, Xi3)
′ and Fi = (X ′i, θi1, θi2)

′ ∼iid N(0,Φ)
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where

Φ =


1 r r 0 0.5

r 1 r 0 0.5

r r 1 0 0.5

0 0 0 1 0

0.5 0.5 0.5 0 1


and r was specified in the first case as 0.8 and in the second case as 0.999. The specification for α
was the same as in the first model and the coefficient vector for X was

β =


0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


The maximum likelihood estimates were obtained by the same approach where now Σ̂ is the sample
covariance of (Xi1, Xi2, Xi3, Yi1, . . . , Yi5)

′ and

A(γ) =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 α21 α22

β3 0 0 0 1

0 β4 0 α41 α42

0 0 β5 α51 α52


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