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Abstract

This paper provides several new results on identification of the linear factor model. The

model allows for correlated latent factors and dependence among the idiosyncratic errors. I

also illustrate identification under a dedicated measurement structure and other reduced rank

restrictions. I use these results to study identification in a model with both observed covariates

and latent factors. The analysis emphasizes the different roles played by restrictions on the

error covariance matrix, restrictions on the factor loadings and the factor covariance matrix,

and restrictions on the coefficients on covariates. The identification results are simple, intuitive,

and directly applicable to many settings.
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1 Introduction

In this paper, I develop a new approach to identification of linear factor models. Specifically, I
study the model

Yij = β′jXi + α′jθi + εij, i = 1, . . . , n, j = 1, . . . , J, (1)

whereXi is a vector of observed regressors, θi is a vector of latent factors, and εij is an idiosyncratic
error. I consider identification based on the first and second moments of Mi = (X ′i, Yi1, . . . , YiJ)′

when the number of observations, n, is large and the number of dependent variables, J , is fixed.
Without the β′jXi term, this is the standard linear factor model (Lawley and Maxwell, 1971;

Spearman, 1904). Initially developed primarily as a joint model of multiple psychological evalu-
ations, factor models have subsequently found many uses in economics. See Aigner et al. (1984)
for a thorough review of the early literature on factor models in econometrics. In more recent
years, factor models have been used as a way of flexibly but parsimoniously modeling unobserved
heterogeneity.1 The factor model has also been implemented as a generalization of the fixed effects
model for panel data (see, e.g., Ahn et al., 2013; Bai, 2009; Moon and Weidner, 2010).

Standard conditions, due to Anderson and Rubin (1956) (henceforth AR), have been estab-
lished for identification of the factor model (excluding observed covariates) when J is fixed, and
these conditions are widely used. However, this well-known identification result relies on the as-
sumption that the idiosyncratic errors are mutually uncorrelated. In many economic applications,
this can be hard to justify. This is particularly problematic when j indexes time, as in a panel data
model. However, this problem can also arise in cross-sectional data for various reasons. While
large J results allow for idiosyncratic correlations (Bai, 2009; Chamberlain and Rothschild, 1983),
few results are available for fixed J .2

Motivated by this problem, in Section 2 I study a factor model without observed covariates
and develop an identification strategy that allows for correlation among the idiosyncratic errors.
While correlation among the idiosyncratic errors could be modeled by including additional latent
factors, in many cases this larger factor structure is not identified.3 The main idea behind the
identification strategy is to translate reduced rank restrictions implied by the factor structure into

1See, for example, Abbring and Heckman (2007); Cunha et al. (2005); Heckman et al. (2016); Khan et al. (2015).
2One important exception are the fixed J interactive fixed effects models for panel data (Ahn et al., 2001, 2013;

Holtz-Eakin et al., 1988), though these models are not fully identified and rely on exclusion restrictions available only
in the panel data context.

3Consider the simplest example, a model with 4 measurements and 1 factor where all pairs of idiosyncratic errors
are uncorrelated except for one. The results in this paper can be used to show that the parameters of such a model
are identified, including the nonzero correlation between idiosyncratic errors. However, if we introduce an additional
latent factor to explain this idiosyncratic correlation, there are not enough measurements for the resulting two factor
model to be identified using standard arguments.
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determinantal equations that can be used to separate the variance of the factors from the variance of
the idiosyncratic errors. I show through several examples how this straightforward approach can
be used to derive identifying conditions for factor models with correlation among idiosyncratic
errors.

This identification strategy also sheds light on other common aspects of factor models. First,
I demonstrate how identification of the full model is possible in cases where the full distribution
of Mi is not observed or identified. This is applicable, for example, in situations involving com-
bination of data from multiple sources where all of the components of Mi are not observed in any
single dataset. See Piatek and Pinger (2016) for an empirical application of this idea. Second, my
results demonstrate how correlation among the latent factors affects identification requirements in
a factor model.4 Third, I show explicitly how overidentifying rank restrictions (e.g., a dedicated
factor structure as in Conti et al., 2014) can alter the requirements for identification.

Because the factors are unobserved, an inherent problem with identification of factor models is
the presence of an observationally equivalent model defined by θ∗i = Gθi for an invertible matrix
G. Goldberger (1972) cited this as an important factor in explaining why some economists are
uncomfortable with the use of factor models. However, in many cases, as Goldberger (1972)
noted and many since have demonstrated, normalizations which limit what matrices G produce an
observationally equivalent model can be founded in theoretically motivated restrictions within an
economic model. When such restrictions are not available, attention can instead be restricted to
parameters, or combinations of parameters, that are identified without resolving this indeterminacy
(Heckman and Scheinkman, 1987; Heckman et al., 2011; Pudney, 1981). I demonstrate this here
by dividing identification into two steps where only the second step requires these normalizations.

I then show in Section 3 that the model of equation (1) can be viewed as a special case of a
factor model without observed covariates and I show how this construction allows my results for
identification of the factor model to be translated into new insights into identification of the more
general model. One important finding relates to correlation between Xi and θi. In the interactive
fixed effects model, there is typically no restriction on this correlation. This is typically the case in
errors-in-variables models as well. In many other uses of the factor model, however, it is assumed
that Xi and θi are independent. I show that these models can be viewed as different solutions to
the problem of observational equivalence between a model with a latent factor Fi = (X ′i, θ

′
i) and a

model with a latent factor GFi for an invertible matrix G. I then demonstrate that identification is
possible under a range of alternative restrictions. I apply the results to an example to demonstrate
the importance of the identifying conditions.

4For example, it does not generally increase the required number of measurements.
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1.1 Related Literature

The results in this paper complement and build on an extensive literature on identification of mod-
els that take the form of equation (1) for fixed J . Many rules have been developed for specific cases
that make it easier to apply the row deletion property of AR discussed below (Bollen, 1989; Dunn,
1973). Some have developed rules that are weaker than this property that apply when the factor
loading matrix is restricted (O’Brien, 1994; Reilly, 1995; Reilly and O’Brien, 1996). In this lit-
erature, some consideration has been given to nonzero correlation among the idiosyncratic errors.
See Bollen and Davis (2009) for a recent discussion of this literature. Similar rules have been de-
veloped for special cases in the applied econometrics literature (Carneiro et al., 2003; Cunha et al.,
2005, 2010; Piatek and Pinger, 2016). Typically these rules do not allow for observed covariates
explicitly or assume that observed covariates are uncorrelated with the latent factors.

Other results in the literature pertain to local identification or generic global identification.
Bekker (1989) and Wegge (1996) provide conditions on local identification and statistical tests
for determining whether these conditions are satisfied.5 Shapiro (1985) and Bekker and ten Berge
(1997) showed that if the Ledermann (1937) bound is satisfied then the factor model is generi-
cally identified in the sense that the set of parameter values for which the model is not identified
has measure zero.6 While the parameter values where identification fails are thus rare, standard
inference also fails in neighborhoods around these values (Briggs and MacCallum, 2003; Cox,
2017; Ximénez, 2006). Thus full identification analysis is required to understand the finite sample
distribution of estimators and test statistics.

Identification conditions relying on higher order moments have also been developed by Bon-
homme and Robin (2009) and Ben-Moshe (2016), among others. These results extend the well-
known identification argument for the errors-in-variables model of Reiersol (1950). The factor
model has also been extended to semi- and nonparametric versions. Cunha et al. (2010), using
results from the measurement error model of Hu and Schennach (2008), prove nonparametric
identification of a nonseparable model. Freyberger (2017) studies nonparametric identification of
a panel data model with interactive fixed effects and fixed J . These results require independent
idiosyncratic errors.

1.2 Some matrix notation

The transpose of a matrix Q is denoted Q′. For two matrices, Q1 and Q2, Q1 ⊗ Q2 denotes the
Kronecker product. The s × s identity matrix is denoted Is. In addition, I use the following

5Local identification of the parameters follows if the parameters are identified in a neighborhood of the true pa-
rameter values. This is in contrast with global identification of the parameters.

6The Ledermann bound is equivalent to the inequalitym+k ≤ (m−k)2 and ensures that the number of unrestricted
parameters is no greater than m(m+ 1)/2.
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conventions to refer to elements of an s× t matrix Q. Lowercase letters are used to refer to vectors
or scalars – qj refers to the jth row and qjk refers to the (j, k) element of the matrix. Capital letters
are used to denote submatrices. While Q1, Q2, ... may be used to refer to a list of submatrices of
Q, Qj1,...,jp;k1,...,kr refers specifically to the p× r matrix formed from rows j1, . . . , jp and columns
k1, . . . , kr of Q,

Qj1,...,jp;k1,...,kr =


qj1k1 qj1k2 . . . qj1kr

...
...

...
...

qjpk1 qjpk2 . . . qjpkr


In addition, Qj1,...,jp refers to the p× t matrix Qj1,...,jp;1,...,t. Lastly, if matrices Q1, Q2, . . . have the
same number of rows then Q = (Q1, Q2, . . .) refers to the matrix obtained by concatenating the
columns.

2 Identification of the Factor Structure

In this section, I consider identification in the model

Mi = AFi + ui (2)

whereMi ∈ Rm is a vector of measurements, Fi ∈ Rk is a vector of latent factors, and ui is a vector
of idiosyncratic errors. The elements of the m× k matrix A are referred to as factor loadings. The
jth measurement is said to load on the sth factor if ajs 6= 0. The model of equation (1) fits in this
framework by defining Mi = (X ′i, Y

′
i )
′ and Fi = (X ′i, θ

′
i)
′ and imposing a priori restrictions on A

and ui; see Section 3.
I maintain the assumption that each of the common factors, Fis, 1 ≤ s ≤ k, is uncorrelated

with each of the idiosyncratic errors, uij, 1 ≤ j ≤ m. This maintained assumption, along with
equation (2), implies that

Σ = AΦA′ + ∆, (3)

where Σ = V ar(Mi), Φ = V ar(Fi) and ∆ = V ar(ui). I study identification of A, Φ, and ∆

based on this equation. It is not required for any of the results that Mi is observed directly, only
that Σ can be consistently estimated.7 In fact, as demonstrated in Theorem 2.1 below, identification

7Thus, the results apply in cases where only the categorical variables Zij =
∑R
r=1 ar1(τj,rMij ≥ τj,r+1) are

observed if the thresholds {τj,r} and the polychoric correlations can be consistently estimated in a first stage. See Ng
(2015) for a recent discussion of estimation of factor models from categorical data.
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is possible even when only some of the m(m + 1)/2 unique components of the matrix Σ can be
consistently estimated. See also Example 1.

2.1 Identification with nonzero idiosyncratic correlations

They key idea underlying identification based on equation (3) is that the rank of the matrix AΦA′

is equal to k, and, thus, any square submatrix of size k + 1 is singular. Let Σ− denote a square
submatrix of Σ of size k + 1 and let ∆− denote the corresponding submatrix of ∆. According to
equation (3),

Σ− = A1ΦA
′
2 + ∆− (4)

where A1 and A2 are (k + 1) × k submatrices of A. This representation holds regardless of the
order in which the rows and columns are taken from Σ to form Σ−.8 Because A1ΦA

′
2 has rank at

most k and is therefore rank-deficient,

det(Σ− −∆−) = 0 (5)

The proof of Theorem 5.1 in AR uses this fact to prove identification under the assumptions
that ∆ is diagonal and that the model satisfies the row deletion property. The model satisfies the
row deletion property if and only if (i) Φ is positive definite and (ii) when any row is removed from
A, two nonoverlapping sets of k linearly independent rows can be formed from the remaining rows
of A. Suppose that these conditions on ∆, Φ and A hold, and, for any j, let Σ− and ∆− denote the
submatrices consisting of rows j, `1, . . . , `k and columns j, `k+1, . . . , `2k where j, `1, . . . , `2k are
distinct integers. Then, if ∆ is diagonal,

Σ− −∆− =

(
σjj − δjj Σj;`k+1,...,`2k

Σ`1,...,`k;j Σ`1,...,`k;`k+1,...,`2k

)

where σjj and δjj refer to the element in the jth row and jth column of Σ and ∆, respectively. The
row deletion property implies that the indices `1, . . . , `2k can be chosen so that rank(A`1,...,`k) =

rank(A`k+1,...,`2k) = k. So Σ`1,...,`k;`k+1,...,`2k = A`1,...,`kΦA
′
`k+1,...,`2k

is nonsingular and the standard

8Specifically, let Σ− = Σj1,...,jk+1;jk+2,...,j2k+2
where j1, . . . , jk+1 are distinct integers between 1 and m and

jk+2, . . . , j2k+2 is another set of distinct integers between 1 and m. Then Σ− = Aj1,...,jk+1
ΦA′jk+2,...,j2k+2

+ ∆−

where ∆− = ∆j1,...,jk+1;jk+2,...,j2k+2
.
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Schur complement formula for the determinant of a partitioned matrix can be applied to obtain

det(Σ− −∆−) = det(Σ`1,...,`k;`k+1,...,`2k) (6)

×
(

(σjj − δjj)− Σj;`k+1,...,`2kΣ
−1
`1,...,`k;`k+1,...,`2k

Σ`1,...,`k;j

)
which, together with equation (5), implies that

δjj = σjj − Σj;`k+1,...,`2kΣ
−1
`1,...,`k;`k+1,...,`2k

Σ`1,...,`k;j

Repeating this for each j shows that the matrix ∆, and hence the matrix AΦA′ = Σ − ∆, is
identified.

This identification argument can be applied more generally in cases where ∆ is not diagonal
and/or all elements of Σ are not known. A system of nonlinear equations can be obtained by
choosing different submatrices and stacking the corresponding equations given by (5). In many
cases, as in the above argument, this system of equations can be solved explicitly. The most
straightforward solution is when, as in the above argument, each determinantal equation involves
only one unknown parameter. This case is summarized in the following theorem, a proof of which
is supplied in the Appendix A.

Theorem 2.1. Suppose that Φ is positive definite and that for each 1 ≤ j1 ≤ j2 ≤ m one of the

following conditions is satisfied.

(a) σj1j2 is known and δj1j2 = 0.

(b) σj1j2 is known and there exist distinct integers `1, . . . , `2k such that ∆`1,...,`k;`k+1,...,`2k = 0,

∆j1;`1,...,`k = 0, ∆`k+1,...,`2k;j2 = 0, and A`1,...,`k and A`k+1,...,`2k are both full rank, and

Σ`1,...,`k;`k+1,...,`2k , Σj1;`1,...,`k and Σ`k+1,...,`2k;j2 are all known.

(c) δj1j2 = 0 and there exist distinct integers `1, . . . , `2k such that ∆`1,...,`k;`k+1,...,`2k = 0,

∆j1;`1,...,`k = 0, ∆`k+1,...,`2k;j2 = 0, A`1,...,`k;1,...,k and A`k+1,...,`2k;1,...,k are both full rank, and

Σ`1,...,`k;`k+1,...,`2k , Σj1;`1,...,`k and Σ`k+1,...,`2k;j2 are all known.

Then Σ, ∆ and AΦA′ are identified.

Remark 1: Allowing for some elements of the covariance matrix Σ to be unknown is useful in two

cases. First, it can be applied in cases where the full vector Mi is not observed in a single dataset

but the missing elements are observed in an auxiliary dataset. See Piatek and Pinger (2016).

Second, it can be applied in cases where some elements of Mi are counterfactual outcomes whose

marginal distributions, but not joint distributions, may be identified (Carneiro et al., 2003). Both

cases are demonstrated in Example 1 below.
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Remark 2: Identification of the distribution of A∗Fi for some k × k matrix A∗ follows under the

conditions of Theorem 2.1 if the zero correlation restrictions are strengthened to independence and

if Fi has a finite mean and nonvanishing characteristic function by an application of Theorem 2.1

in Ben-Moshe (2018).

Remark 3: This result provides a way to derive identification of ∆ andAΦA′ without imposing any

normalizations. These normalizations can be considered in a second step to obtain identification

of A and Φ or other features of the model (see Section 2.3).

Remark 4: The rank conditions in Theorem 2.1 are stated in terms of the underlying parameters.

However, as is evident from the proof, it is sufficient for Σ`1,...,`k;`k+1,...,`2k to be nonsingular. Thus,

this is a testable condition.

Remark 5: While the restrictions on ∆ are imposed a priori, the identity of the indices (`1, . . . , `2k)

satisfying condition (b) or (c) does not need to be known. If the condition is satisfied for some

(`1, . . . , `2k) then one can search across all (`1, . . . , `2k) for which (a) ∆`1,...,`k;`k+1,...,`2k = 0,

∆j1;`1,...,`k = 0, ∆`k+1,...,`2k;j2 = 0, and (b) Σ`1,...,`k;`k+1,...,`2k , Σj1;`1,...,`k and Σ`k+1,...,`2k;j2 are known,

and check if Σ`1,...,`k;`k+1,...,`2k is nonsingular.

This result applies to a much broader class of models than the well-known AR result. It avoids
the often tedious task of solving equation (3) for A, Φ, and ∆ under particular normalizations.
Though the notation is cumbersome, it can be fairly easy to implement. The result is limited in
that it only considers identification from the determinantal equations of the form (5) that contain
only one unknown parameter and it does not use the equations of this form that contain multiple
unknown parameters. However, this situation still applies in many cases, and when it does not
apply, the results can be naturally extended, though not in a way that lends itself to a general
statement of identification. I now demonstrate the use of Theorem 2.1, and when the theorem does
not apply, through three examples. I then study specific classes of examples.

Example 1 Consider a model where m = 4, k = 1 and σ12 is not known but the remaining
elements of Σ are known. This situation could arise if two datasets are available where Mi1 is ob-
served in only the first dataset, Mi2 is observed in only the second, and Mi3 and Mi4 are observed
in both. It is also relevant in a sample selection model where Mi1 and Mi2 represent counterfactual
outcomes.9 Suppose Φ, which is a scalar in this case since k = 1, is strictly positive. Further, sup-
pose all 4 factor loadings, aj1, j = 1, . . . , 4, are nonzero and that ∆ is diagonal. After reordering

9Suppose Yi = DiY1i + (1−Di)Y0i where Di is a binary choice variable and Y1i and Y0i are potential outcomes.
Suppose Di = 1(D∗i ≥ 0). Suppose Wi is a measurement or another outcome that is not affected by the choice Di.
Carneiro et al. (2003) show conditions under which the joint distribution of (Y1i, D

∗
i ,Wi) and the joint distribution of

(Y0i, D
∗
i ,Wi) are identified. Thus, this model is applicable with Mi1 = Y1i, Mi2 = Y0i, Mi3 = Wi, and Mi4 = D∗i .
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the elements of Mi, equation (3) can be written as
σ11 σ13 σ14 σ12

σ13 σ33 σ34 σ23

σ14 σ34 σ44 σ24

σ12 σ23 σ24 σ22

 = AΦA′ +


δ11 0 0 0

0 δ33 0 0

0 0 δ44 0

0 0 0 δ22


where I use italics to indicate the elements of Σ that are unobserved. Note that the 3× 3 upper left
block of Σ is observed in one dataset and the 3×3 lower left block is observed in the other dataset.

The conditions of Theorem 2.1 can be easily verified. For any of the diagonal elements of ∆,
δjj , apply condition (b) with `1 and `2 corresponding to two other measurements observed in the
same dataset as Mj . This is the same argument used to prove the theorem of AR. The only other
remaining pair for which condition (a) does not apply is (j1, j2) = (1, 2). For this pair, condition
(c) is satisfied with (`1, `2) = (3, 4) because δ34 = δ13 = δ24 = 0, a31 and a41 are nonzero, and
σ34, σ13, and σ24 are known. Thus Σ, ∆, and AΦA′ are identified.

In particular, the covariance σ12 is identified. Note that this is identified from the equation
σ12 = σ13σ24

σ34
. Using a factor model to identify dependence by reducing the dimension is not a new

idea but the fact that this is possible without imposing any restriction on Φ or the factor loadings
does not seem to have been previously recognized. It should also be noted that this argument is
impossible if δ12 6= 0 though in that case σ12 − δ12 is still identified.

Example 2 In the previous example, a subset of the measurements formed an identified factor
model. Specifically, (Mi1,Mi3,Mi4) satisfies all the conditions of Theorem 5.1 of AR, as does
(Mi2,Mi3,Mi4). However, Theorem 2.1 can also be applied in cases where no subset of the mea-
surements forms an identified factor model. For example, suppose m = 6, k = 2 and Σ is fully
observed. Further, suppose that in addition to the diagonal elements of ∆, δ12, δ34, and δ56 are also
nonzero. But the remaining elements of ∆ are 0. For this case, equation (3) can be written as

σ11 σ12 σ13 σ14 σ15 σ16

σ21 σ22 σ23 σ24 σ25 σ26

σ31 σ32 σ33 σ34 σ35 σ36

σ41 σ42 σ43 σ44 σ45 σ46

σ51 σ52 σ53 σ54 σ55 σ56

σ61 σ62 σ63 σ64 σ65 σ66


= AΦA′ +



δ11 δ12 0 0 0 0

δ12 δ22 0 0 0 0

0 0 δ33 δ34 0 0

0 0 δ34 δ44 0 0

0 0 0 0 δ55 δ56

0 0 0 0 δ56 δ66


The conditions of Theorem 2.1 can then be verified for this example if rank(A1,2) = rank(A3,4) =

rank(A5,6) = 2. Consider first the index pair (j1, j2) = (1, 1). Let (`1, . . . , `2k) = (3, 4, 5, 6).
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Then condition (b) is satisfied because ∆3,4;5,6 = 0, ∆1;3,4 = 0 and ∆1;5,6 = 0 and A3,4 and A5,6

are full rank.
For pairs (1, 2) and (2, 2), condition (b) in the theorem can also be applied with (`1, . . . , `2k) =

(3, 4, 5, 6) since ∆2;3,4 = 0 and ∆2;5,6 = 0. Similarly, for pairs (3, 3), (3, 4) and (4, 4), apply (b)
with (`1, . . . , `2k) = (1, 2, 5, 6) and for the remaining pairs corresponding to nonzero elements of
∆ apply (b) with (`1, . . . , `2k) = (1, 2, 3, 4). More general block structures like this are considered
in Section 2.1.2.

Example 3 Lastly, before proceeding to consider some general classes of examples, I introduce
an example where Theorem 2.1 does not apply but the model is nevertheless identified. Suppose
that k = 1, m > 3, the off-diagonal elements of ∆1,2,3;1,2,3 are all 0, and that Φ, a11, a21, and a31
are all nonzero. For each j > 3, suppose that δ`j = 0 for some ` < j. Lastly, suppose Σ is fully
observed. One model that satisfies these conditions is

σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

σ31 σ32 σ33 σ34

σ41 σ42 σ43 σ44

 = AΦA′ +


δ11 0 0 δ14

0 δ22 0 δ24

0 0 δ33 0

δ14 δ24 0 δ44


Either condition (a) or condition (b) is satisfied for any (j1, j2) such that 1 ≤ j1 ≤ j2 ≤ 3

if a11, a21, and a31 are nonzero. Next consider the pair (j, j) for j > 3. If (`1, `2) is such that
δj,`1 = δj,`2 = 0, as required by condition (b), then `1 = `2 because the model only restricts δ`,j for
a single value of `. Since δ`,` 6= 0, it is not possible to satisfy condition (b).

However, identification is possible because, while δ`,` is not 0, it is identified in a previous step.
Indeed, let Σ− = Σ`,j;`,j and let ∆− denote the corresponding submatrix of ∆. Equation (5) holds
and can be simplified to

(σ`` − δ``)(σjj − δjj) = σ2
j`

Starting with j = 4, these equations can be solved iteratively if a`1 6= 0 since δ`` is identified in a
previous step and σ`` − δ`` = a2`1Φ.

Then, for any j1 < j2 such that δj1j2 6= 0, equation (5) for the submatrix with rows (`, j1) and
columns (`, j2), for ` such that δ`,j2 = 0, can be written as

(σ`` − δ``)(σj1j2 − δj1j2) = (σ`j1 − δ`j1)σ`j2

Then δ`` has been identified already so only δj1j2 and δ`j1 are unknown. These equations can also
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be solved iteratively starting with a case where δ`j1 = 0.10 This example again demonstrates the
important link between the nonzero elements of ∆ and the particular rank conditions required on
the factor loading matrix, A. It is not the case that nonzero correlations in ∆ come for free as long
as m is sufficiently large and AR’s row deletion property is satisfied.

2.1.1 m∗-dependence of idiosyncratic errors

Consider a model where δj` = 0 if and only if |j− `| > m∗ for some nonnegative integer m∗. This
type of dependence arises is satisfied by a moving average process but can also arise from a certain
type of spatial error structure. The factor model of equation (2) based on the moment conditions (3)
is still identified when the errors, ui, satisfy m∗-dependence for m∗ > 0, albeit under a stronger
rank condition. I will first demonstrate this for k = m∗ = 1.

Suppose, for example that k = m∗ = 1 and m = 5. The submatrix ∆1,3;1,5 consists of only one
nonzero element, δ11. Therefore,

det(Σ1,3;1,5 −∆1,3;1,5) = (σ11 − δ11)σ35 − σ13σ15

Since k = 1, det(Σ1,3;1,5−∆1,3;1,5) = 0 which implies that δ11 = σ11− σ13σ15
σ35

if σ35 = a3a5Φ 6= 0.
If a1 is also nonzero then δ33 and δ55 are identified by an analogous argument.11

Next, δ12 is identified from the equation det(Σ1,5;2,3−∆1,5;2,3) = (σ12− δ12)σ35− σ13σ25 = 0,
δ22 is identified from the equation det(Σ1,2;2,5−∆1,2;2,5) = (σ12−δ12)σ25−(σ22−δ22)σ15 = 0, and
δ23 from det(Σ2,3;3,5 −∆2,3;3,5) = (σ23 − δ23)σ35 − (σ33 − δ33)σ25 = 0. Similarly, δ45 is identified
from det(Σ3,4;1,5 − ∆3,4;1,5) = 0, δ44 is identified from det(Σ1,4;4,5 − ∆1,4;4,5) = 0, and δ34 from
det(Σ1,3;3,4 −∆1,3;3,4) = 0. Thus, ∆ is identified if a1, a3, and a5 are nonzero.

This identification argument can be extended as long as m ≥ 2(k + m∗) + 1, as stated in the
following theorem.

Theorem 2.2. Suppose the errors ui in the model of equation (2) satisfy m∗-dependence for m∗ >

0 and m ≥ 2(k + m∗) + 1. Then ∆ and AΦA′ are identified based on the moment conditions (3)

if Φ is positive definite and every k × k submatrix of A is full rank.

This theorem is proved in the supplemental appendix under a weaker sufficient condition on A
that still allows m to be as small as 2(k + m∗) + 1. The weaker condition still requires loadings
associated with particular each factor to be somewhat persistent over time, in order to separate

10Specifically, start with j2 = 4. For any j1 < j2 = 4 it must be that δ`,j1 = 0 since `, j1 ≤ 3. Next, take j2 = 5.
Then either j1 and ` are both less than 4, in which case δ`j1 = 0, or either ` or j1 is equal to 4, in which case δ`j1 was
identified in the first step. This can be iterated until j2 = m.

11If a1, a3, a5 and Φ are nonzero then δ33 = σ33 − σ13σ35

σ15
and δ55 = σ55 − σ15σ35

σ13
.
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correlation due to the latent factors from correlation due to dependence among the idiosyncratic
errors.

2.1.2 Block diagonal ∆

Another common type of dependence can be described by a cluster or group structure. Suppose
there are groups of measurements, g = 1, . . . , G such that idiosyncratic errors are correlated within
groups but not between groups. Suppose group g has mg measurements and the measurements are
ordered so that j = 1, . . . ,m1 correspond to group 1, j = m1 + 1, . . . ,m1 + m2 correspond to
group 2, etc. Let Ag denote the mg×k submatrix of A corresponding to group g and let ∆g denote
the submatrix of ∆ corresponding to group g so that ∆ = diag(∆1, . . . ,∆G).

Theorem 2.3. Suppose the errors ui in the model of equation (2) satisfy a group structure. Then ∆

andAΦA′ are identified based on the moment conditions (3) if Φ is positive definite, rank(Ag) = k

for each g, and G ≥ 3. The latter is a necessary condition for identification of ∆ and AΦA′.

The proof of Theorem 2.3, contained in the Appendix A, is similar to the proof of AR’s The-
orem 5.1. To accommodate cases where Ag is not full rank for some, or all, g, a more general
result can be obtained from an extension of the row deletion property, the groupwise row dele-

tion property. The loading matrix A satisfies the groupwise row deletion property if, when rows
corresponding to any group g are removed there remain two sets of k linearly independent rows
corresponding to two distinct sets of groups. That is, there are k × k submatrices A1 and A2 of A
such that (a) each is nonsingular, (b) neither includes a row corresponding to group g, and (c) nei-
ther includes a row corresponding to the same group as a row in the other. Unlike the row deletion
property, this is a property of A relative to the structure of ∆, and thus cannot be stated without
specifying the group structure satisfied by ∆.

Theorem 2.4. Suppose the errors ui in the model of equation (2) satisfy a group structure. Then ∆

and AΦA′ are identified based on the moment conditions (3) if Φ is positive definite and A satisfies

the groupwise row deletion property.

See the supplemental appendix for a proof of this theorem and further discussion.

2.1.3 Simultaneous equations system

Dependence between idiosyncratic errors also arises when equation (2) is the reduced form of a
simultaneous equations system. Suppose that Mi satisfies the simultaneous equation system

Mi = HMi + ÃFi + ũi

11



Then, if Im − H is invertible, Mi satisfies the model of equation (2) with A = (I − H)−1Ã and
ui = (I −H)−1ũi. Typically ∆ = (I −H)−1V ar(ũi)(I −H)−1′ is not diagonal even if V ar(ũi)
is. However, ∆ may have enough nonzero elements to be identified.

Suppose, for example, that V ar(ũi) is diagonal and H = diag(H1, . . . , HS) where each Hs

is ms × ms. Then, if I − Hs is invertible for each s, ∆ is block diagonal as well since (I −
H)−1 = diag((Im1−H1)

−1, . . . , (ImS−HS)−1). Since ∆ is block diagonal, results in the previous
section can be applied to derive identification conditions for the reduced form matrix ∆. See the
supplemental appendix for an example of identification where H is not block diagonal. Once
AΦA′ and ∆ are identified, identification of Ã, H , and V ar(ũi) follows from standard arguments
for simultaneous equations in combination with the arguments studied below in Section 2.3.

2.2 Dedicated measurements

In many empirical studies using factor models, overidentifying restrictions are imposed in the hope
of making the components of Fi more interpretable (Conti et al., 2014; Cunha et al., 2010; Heck-
man et al., 2006). These studies assume a dedicated factor structure where some, or all, measure-
ments load on only one factor. Bollen (1989), O’Brien (1994), Reilly (1995), Reilly and O’Brien
(1996), and Conti et al. (2014) develop some rules for identification under such a structure. In this
section, I consider identification under general overidentifying rank restrictions on the factor load-
ing matrix, A, that include a dedicated factor structure as a special case. I seek minimal additional
assumptions so that the model is identified, rather than imposing these restrictions in addition to
standard identifying assumptions, such as those of AR. I also allow for some dependence among
the idiosyncratic errors, as in Theorem 2.1

Before proceeding to the general result, I consider the following example. Suppose k = 2 and
m = 4. Since m < 2k + 1, even if ∆ is diagonal identification will generally fail. However,
suppose that a12 = a22 = a31 = a41 = 0. That is, the first two measurements load only on Fi1 and
the second two measurements load only on Fi2. This is a dedicated measurement condition – the
first two measurements are dedicated to the first factor and measurements 3 and 4 are dedicated
to the second factor. Cunha et al. (2010), for example, study a dynamic factor model where 2

measurements are available each period for T ≥ 2 periods and each is dedicated to a period-
specific factor. In this simple example it is easy to see that if φ12, and the four unrestricted factor
loadings are all nonzero then ∆ is identified.12 This example demonstrates how overidentifying
restrictions can change the nature of the identification problem. While fewer measurements are
required than in the standard result for a 2 factor model, a new requirement is introduced – that
φ12 6= 0.

12The usual argument proceeds by assuming that a11 = a32 = 1 and solving explicitly for the remaining parameters,
starting with the equation Cov(Mi1,Mi3) = φ12.
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In this example, the zero restrictions on the factor loadings imply that rank(A1,2) = rank(A3,4) =

1 < k. The approach introduced in this paper can be extended to consider reduced rank restrictions
like this. Restricting the rank of submatrices of A has the advantage over imposing zeros that it
does not impose a particular interpretation onto the factors. For example, if Mi1 and Mi2 are math
tests and Mi3 and Mi4 are verbal tests then zero restrictions give the impression that Fi1 represents
math ability and Fi2 represents verbal ability and that math ability does not influence performance
on verbal tests and vice versa. A rank restriction, on the other hand, only implies that both math
tests depend on the same linear combination of the two dimensions of ability.

Reduced rank restrictions imply that additional identifying equations of the form (5) hold. For
some integer 1 ≤ r < k, let Σ− denote a square submatrix of Σ of size r + 1 and let ∆− denote
the corresponding submatrix of ∆. According to equation (3),

Σ− = A1ΦA
′
2 + ∆− (7)

whereA1 andA2 are (r+1)×k submatrices ofA. Suppose that rank(A1) = r. Then rank(A1ΦA
′
2) ≤

r so the (r + 1)× (r + 1) matrix Σ− −∆− = A1ΦA
′
2 is rank deficient and has zero determinant.

Thus the reduced rank restriction on A1 produces a new identifying equation, det(Σ− −∆−) = 0,
that is not satisfied if rank(A1) > r. For the two factor example above, let Σ− = Σ1,2;1,3. Since
A1,2 has rank 1 this equation can be solved for δ11 when ∆ is diagonal since in that case it is the
only nonzero element of ∆−, as long as σ23 = a21a32φ12 6= 0.

We can use this idea to analyze a dedicated factor structure. In the dedicated factor structure,
each row of A only has one nonzero entry. This is also known as a model with factor complexity
one (Reilly, 1995). Also, suppose that ∆ is diagonal. The dedicated factor structure means that
the rows of A can be split into k different sets where each set of rows has rank 1. Then, suppose
each set contains at least two rows. Let j, `1 correspond to two rows in the same set such that
A1 = Aj,`1 has rank 1. Let `2 correspond to any row in a different set such that a`1Φa

′
`2
6= 0.

Then if Σ− = Σj,`1;j,`2 and ∆− denotes the corresponding submatrix of ∆, δjj is identified from
the equation

det(Σ− −∆−) = (σjj − δjj)σ`1`2 − σj`1σj`2

This equation holds because A1 has rank 1 and it can be solved for δjj because σ`1`2 = a`1ΦA
′
`2
6=

0.
The following theorem provides a general result for identification under reduced rank restric-

tions and non-diagonal ∆.

Theorem 2.5. Suppose that Φ is positive definite and that for each 1 ≤ j1 ≤ j2 ≤ m one of the

following conditions is satisfied.
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(a) δj1j2 = 0

(b) there exist distinct integers `1, . . . , `2r such that rank

((
aj1

A`1,...,`r

))
= r,

∆`1,...,`r;`r+1,...,`2r = 0, ∆j1;`1,...,`r = 0, ∆`r+1,...,`2r;j2 = 0, and

rank(A`1,...,`rΦA`k+1,...,`2r) = r.

(c) there exist distinct integers `1, . . . , `2r such that rank

((
aj2

A`1,...,`r

))
= r,

∆`1,...,`r;`r+1,...,`2r = 0, ∆j1;`1,...,`r = 0, ∆`r+1,...,`2r;j2 = 0, and

rank(A`1,...,`rΦA`k+1,...,`2r) = r.

Then ∆ and AΦA′ are identified, provided that all elements of Σ are known.

Remark 6: Reiersol (1950) and Wang (2016) also impose reduced rank restrictions. Specifically,

both assume that each column ofA has at least s ≥ k zeros. This implies that the submatrix formed

by the rows with a zero in a particular column is rank deficient, with rank equal to k − 1. They

impose these restrictions in addition to assuming the row deletion property of AR. The purpose of

these assumptions is for identification of A and Φ once ∆ and AΦA′ are identified from the row

deletion property. This is discussed further in Section 2.3 below.

Remark 7: The zero restrictions in Reiersol (1950) and Wang (2016) are in unknown locations.

This is useful because the location of the nonzero factor loadings can then be estimated along with

the magnitude of these loadings. Conti et al. (2014), e.g., show that a factor model of complexity

one is identified without knowing which column of each row ofA is nonzero and use this to develop

a strategy for estimating which factor each measurement loads on. By contrast, Theorem 2.5

requires that the submatrices of A satisfying reduced rank restrictions are known.

Extending Theorem 2.5 to allow the location of the reduced rank restrictions to be unknown

seems formidable because of the requirement that corresponding elements of ∆ must be 0. How-

ever, generally the location of such restrictions does not need to be known if there are testable im-

plications of the assumption that specified submatrices have reduced rank. For example, consider

the model with two factors and two dedicated measurements for each factor, where measurements

1 and 2 load on factor 1 and measurements 3 and 4 load on factor 2 and the unrestricted factor

loadings are all nonzero. It is not necessary to assume a priori which measurements load on the

same factor because Σ1,2;3,4 is the only 2× 2 submatrix of Σ which has rank 1. This indicates the

proper grouping.
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It is easy to see that the dedicated factor structure with diagonal ∆ satisfies the conditions
of this theorem with r = 1. Also, Theorem 2.1 is a special case of this result with r = k if Σ is
known.13 But it also allows for a range of models between these two extremes. In the supplemental
appendix, I demonstrate this through a model from the literature on human capital formation.

2.3 Identifying economically meaningful parameters

While separating AΦA′ and ∆ is often an important decomposition of variance into the por-
tion due to Fi and the portion due to the idiosyncratic component, often this is not sufficient
by itself to answer meaningful questions or test economic hypotheses. The issue is that the
factor model suffers from a fundamental indeterminacy. For any nonsingular k × k matrix G,
(AG)(G−1ΦG−1′)(AG)′ = AΦA′. Therefore, if the goal is identification of Φ and A then addi-
tional restrictions, or normalizations, are required. In some cases these restrictions may arise from
the underlying economic model naturally. When natural restrictions are not available, important
objects of interest may still be identified. In this section, I briefly discuss these issues and provide
an illustrative example.

Rotations Assume that Ψ = AΦA′ is identified. Suppose that B′A is a lower triangular matrix
for some known m × k matrix B. This includes the case where A itself is lower triangular by
taking B = (Ik, 0k×m−k)

′. This is a standard assumption in factor analysis; alternatives include the
restriction that A′A is diagonal and the restriction that A′∆−1A is diagonal (see, e.g., Anderson
and Rubin, 1956; Rao, 1955).

Suppose further that Φ is positive definite and that none of the elements on the diagonal of B′A
is zero. Then AL is identified where L is the unique Cholesky decomposition of Φ.14

Suppose in addition that either Φ is diagonal or A1,...,k, the first k rows of the matrix A, is
diagonal. Under either of these conditions, A is identified up to scale.15 These two restrictions can
be combined in interesting ways as well. Suppose, for example, that A1,...,k is block diagonal with
T blocks, A1, . . . , AT , where each block is kt×kt. Then let Φ = (Φtt′) where Φtt′ is kt×kt′ . Then
A and Φ are identified up to scale if Φtt is diagonal for each t.

AR also describe an alternative scheme, due to Reiersol (1950), that imposes additional zero
restrictions but does not require that the rows where these restrictions are satisfied is known. See

13Theorem 2.5 can, of course, also be extended to the case where some elements of Σ are unknown.
14See AR for a proof of this that involves solving algebraically for the elements of AL. Here is a shorter proof.

Proof. If B′A is lower triangular then so is B′AL is lower triangular. Also, B′AL(B′AL)′ = B′AΦA′B so B′AL
is a Cholesky decomposition of B′ΨB. Also, B′A is nonsingular so B′ΨB is positive definite and therefore has a
unique Cholesky decomposition. Thus, the matrix B′AL is identified. Then, B′Ψ = (B′AL)(AL)′ and B′AL is
nonsingular so AL is identified as the transpose of (B′AL)−1B′Ψ.

15That is, s1A1, . . . , skA
k are identified, where A1, . . . , Ak are the columns of A and s1, . . . , sk are unknown

scalars.
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Wang (2016) for a recent discussion of this result. Similarly, in a model of factor complexity one
A and Φ are identified up to scale without assuming a priori which factor each measurement loads
on, as shown by Conti et al. (2014).

Scale The scale problem is typically resolved through normalizations. If, for each 1 ≤ s ≤ k,
there is a j such that ajs is known then A and Φ are identified. The scale can be resolved through
restrictions on Φ as well. For example, in either case, a normalization on ajs for some j can be
replaced by a normalization on φss. More interestingly, restrictions on the relationship among
different elements of Φ can also be helpful in resolving the scale. See the supplemental appendix
for an example drawn from Agostinelli and Wiswall (2016, 2017).

The lower triangular structure is often hard to justify when the individual factors take on specific
economic or scientific meaning. The underlying economic model may suggest, for example, that
each component of Fi should be present in all equations. When A naturally satisfies the lower
triangular structure it may not be appealing to assume either that Φ is diagonal or thatA1,...,k;1,...,k is
diagonal. Lastly, even scale normalizations are not innocuous in that they can substantially change
the interpretation of results (Agostinelli and Wiswall, 2016). Nevertheless, important interpretable
features of the model are sometimes identified without imposing sufficient restrictions to identify
the full model.

I now demonstrate this point through one particularly interesting result that has various appli-
cations. Suppose that

A =

 Ik1 0

A21 A22

A31 A32

 (8)

where A21 has k − k1 > 0 rows. This is not even lower triangular if A22 is not lower triangular.
Nevertheless, it can be shown that if A22 is invertible then both A32A

−1
22 and A31 − A32A

−1
22 A21

are uniquely determined from AΦA′. I summarize this as a theorem. A proof is provided in the
Appendix A.

Theorem 2.6. Suppose AΦA′ is identified and Φ is positive definite. If the factor loading matrix

A can be written in the form of equation (8) where A22 is invertible then A32A
−1
22 and A31 −

A32A
−1
22 A21 are identified.

This result can be used in several ways. For example, if A21 = 0 then A31 is identified,
regardless of any further restrictions on A22. Or, if A22 is known then A32 is identified, regardless
of any restrictions on A21. Other restrictions can be used to identify A31 and/or A32 as well.
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See Section 3. The result can also be used to test important economic hypotheses without any
additional restrictions.

Consider, for example, a simplified version of the model studied in Cunha et al. (2005). Let
Mi1 denote an IQ score or another measure of cognitive ability. Let Mij represents earnings in
the (j − 1)st period after schooling is completed ,for 2 ≤ j ≤ m − 1, and let Mim represent
years of schooling.16 Suppose Fi1 represents cognitive ability and Fi2 represents a separate factor
that influences earnings. Thus a12 = 0 is indicated by the theory and a11 = 1 is an innocuous
scale normalization but there are no additional restrictions. Then, for 2 ≤ j, j′ ≤ m− 1, aj′2/aj2,
which represents the relative influence of the “earnings factor” on earnings in different periods,
is identified without requiring that Fi1 and Fi2 are uncorrelated or that Fi1 is excluded from any
equation.

The tests of the contents of inviduals’ information set when making schooling decisions con-
sidered by Cunha et al. (2005) are also possible. First, if a21 and a22 are both nonzero it is possible
to test the null hypothesis that Fi1 and Fi2 are both not in the information by testing the null that
the identified parameters am2/a22 and am1− am2(a21/a22) are both 0. If this is rejected then either
am1 or am2 must be nonzero, meaning that one of the two factors is in the information set. It is
then possible to test the null hypothesis that only Fi1 is in the identified set by test the null that
am2/a22 = 0.

Finally, testing the null that only Fi2 is in the identified set is more difficult. One could test the
null that am2

a22
(am1 − am2(a21/a22)) ≤ 0. If am1 = 0 then this inequality is satisfied. However, this

test only has power against alternatives where am1

am2
≥ a21

a22
. If the ratio aj1/aj2 varies sufficiently

with j then a more powerful procedure would be to test jointly that am2

aj2
(am1 − am2(aj1/aj2)) ≤ 0

for all 2 ≤ j ≤ m− 1.

3 Identification of the model with observed regressors

In this section, I return to the general model of equation (1). Suppose that Xi represents a vector
of dX observed regressors and θi represents a vector of kθ latent factors. I assume throughout that
Cov(Xis, εij) = 0 for all s, j, and Cov(θi`, εik) = 0 for all `, k. I then consider identification based
on the first and second moments of Mi = (X ′i, Yi1, . . . , YiJ)′.

If each Xis is uncorrelated with each θi` then identification is straightforward. In that case, βj
is identified from a regression of Yij on Xi since Cov((αjθij + εij), Xi) = 0. Furthermore, this
implies that the residuals, Yij−β′jXi, can be constructed and the results of Section 2 can be applied
to the covariance matrix of the J residuals to obtain identification of the remaining parameters. In

16In Cunha et al. (2005), schooling is modeled using a threshold crossing model. The argument is still applicable
if, for example, Mi2 is a latent index such that schooling is given by 1(Mi2 ≥ 0).
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the remainder of this section I will be concerned with the case where some or all of the variables
in Xi are correlated with the factors, θi.

Let Yi = (Yi1, . . . , YiJ)′ and εi = (εi1, . . . , εiJ). The model of equation (1) can be written in
the form of equation (2) with Mi = (X ′i, Y

′
i )
′, Fi = (X ′i, θ

′
i)
′, ui = (0, ε′i)

′ and

A =

(
IdX 0

β α

)
(9)

where α and β are constructed by stacking the vectors αj and βj as rows. Moreover, Fi is uncorre-
lated with ui so that equation (3) is satisfied with

∆ =

(
0 0

0 ∆Y

)
(10)

Lastly, the matrices Σ and Φ can also be written in partitioned form to conform with A and ∆.

Σ =

(
ΣX ΣXY

Σ′XY ΣY

)
, Φ =

(
ΦX ΦXθ

Φ′Xθ Φθ

)

Thus the system of equations given in (1) can be represented as a k = dx + kθ factor model with
m = dX + J .

In the remainder of this section, I study identification of the model of equation (1) based on
the moment conditions (3) under the restrictions implied by (9) and (10). Following the analysis
of Section 2, I first consider identification of ∆ and AΦA′ from equations of the form (5). I then
explore what additional restrictions are sufficient to identify A and Φ.

3.1 Identification of reduced form parameters

Applying Theorem 5.1 of AR, identification of ∆ andAΦA′ follows if Φ is full rank,A satisfies the
row deletion property, and ∆Y is diagonal. Applying this directly, however, results in identification
conditions that are more restrictive than necessary. Indeed this would suggest a requirement that
J ≥ dX + 2kθ + 1.17 Applying the AR results or the results in Section 2 directly fails to take
advantage of the restrictions on ∆ implied by the fact that Xi is observed.

An identified factor structure BecauseXi is observed, ∆ has more zero elements than in the ex-

amples considered in Section 2. Consider a submatrix of Σ of the form Σ− = Cov

((
Xi

Y
(1)
i

)
,

(
Xi

Y
(2)
i

))
17The row deletion property requires m ≥ 2k + 1. Because m = dX + J and k = dX + kθ, this inequality is

equivalent to J ≥ dX + 2kθ + 1.

18



where Y (1)
i and Y (2)

i each consist of kθ + 1 elements of Yi and let ∆− represent the corresponding
submatrix of ∆. Then Σ−−∆− is a (k+1)×(k+1) matrix of rank k and hence det(Σ−−∆−) = 0.
Moreover, since the only nonzero elements of ∆− are in the submatrix ∆−Y = Cov(ε

(1)
i , ε

(2)
i ), if

ΣX = V ar(Xi) is full rank then

det(Σ− −∆−) = det(ΣX)det
(
Σ−Y −∆−Y

)
where Σ−Y = Cov(Y

(1)
i , Y

(2)
i ) − Cov(Y

(1)
i , Xi)Σ

−1
X Cov(Xi, Y

(2)
i ). Thus the only role that the

presence of Xi in the model plays in terms of deriving sufficient conditions for identification of ∆

and AΦA′ is that Σ−Y is a submatrix of the Schur complement of Σ with respect to ΣX rather than
simply a submatrix of ΣY . Increasing dX , the number of observed covariates, does not affect any
requirements on J .

To see this more directly, let E∗ denote the linear projection operator.18 Because E∗(εi | Xi) =

0,

Yi − E∗(Yi | Xi) = α(θi − E∗(θi | Xi)) + εi

Thus, the observed covariatesXi have been removed, and, since εi is uncorrelated with θi−E∗(θi |
Xi), this leaves a linear factor model,

ΣS
Y = αΦS

θα
′ + ∆Y (11)

where ΣS
Y = V ar(Yi − E∗(Yi | Xi)) is the Schur complement of Σ with respect to ΣX and

ΦS
θ = V ar(θi − E∗(θi | Xi)) is the Schur complement of Φ with respect to ΦX . If ∆Y = V ar(εi)

is identified in this factor model, then ∆ and hence AΦA′ = Σ−∆ are identified as well.

Exclusion restrictions In some cases the presence of Xi can reduce the restrictions required to
identify ∆ and AΦA′ if enough components of β are restricted to be 0. Such exclusion restrictions
are common in practice. If some components of Yi are “outcomes” while others are pure “mea-
surements”, many, if not all, of the regressors present in the outcome equations are excluded from
the equations for the pure measurements. If j indexes time, so that the model is a panel data model,
and Xi = (X ′i1, . . . , X

′
iJ)′ where Xij ∈ Rq then typically β = IJ ⊗ β0 where β0 is q × 1. Even if

the coefficients are time-varying and some lags or leads of Xij are allowed, there will still be many
exclusion restrictions.

Suppose that dX ≥ kθ. Fix j = 1 and suppose that at least kθ elements of β1 are 0. Further,
let Y (1)

i denote a length kθ subvector of (Yi2, . . . , YiJ)′ with a corresponding coefficient matrix β(1)

18For random vectors Z1 and Z2, E∗(Z2 | Z1) = Cov(Z2, Z1)V ar(Z1)−1Z1.
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such that these same kθ elements of each row of β(1) are also 0. Then let Xexc
i and X inc

i denote
the elements of Xi corresponding to the zero and nonzero elements of β1, respectively. Thus the
variables Xexc

i are excluded from the equation for Yi1 as well as the equation for Y (1)
i . Then define

M
(1)
i = (X inc′

i , Yij, Y
(1)′
i )′ and M (2)

i = (X inc′
i , Yij, X

exc,1
i ) where Xexc,1

i is a length kθ subvector of
Xexc
i . Let M (1)

i = A(1)F + ε
(1)
i and M (2)

i = A(2)F + ε
(2)
i where A(1) and A(2) are the appropriate

submatrices of A, each with kθ + dim(X inc
i ) + 1 rows. Because of the restrictions on βj and

β(1), rank(A(1)) ≤ kθ + dim(X inc
i ). Therefore, if Σ− = Cov(M

(1)
i ,M

(2)
i ) and ∆− denotes the

corresponding submatrix of ∆ then Σ−−∆− = A(1)ΦA(2)′ and det(Σ−−∆−) = 0. Let M (11)
i and

M
(21)
i denote the subvectors of M (1)

i and M (2)
i that exclude Yi1. If the only nonzero element of ∆−

is V ar(εi1) and if Cov(M
(11)
i ,M

(21)
i ) is full rank then the equation det(Σ− − ∆−) = 0 uniquely

identifies V ar(εi1). The same argument can be repeated for j > 1 if there are sufficient exclusion
restrictions.

Thus there is a tradeoff between these exclusion restrictions and restrictions on ∆Y . If there are
fewer exclusion restrictions, the above argument can be modified by redefining M (21)

i to include
Y

(2)
i , a subvector of Yi. Further, as I have already shown, if there are sufficient restrictions on ∆Y

then identification of AΦA′ and ∆Y follows without any exclusion restrictions. On the other hand,
with enough additional exclusion restrictions, identification of β is possible with no restrictions on
∆Y . Starting with the same definition of Y (1)

i , suppose that X inc
i can be divided into X inc,1

i and
X inc,2
i so that X inc,1

i is excluded from Y
(1)
i and X inc,2

i is excluded from Yi1.

Yi1 = β01 − α1(α
(1))−1β

(1)
0 + β1Xi − α1(α

(1))−1β(1)Xi + α1(α
(1))−1Y

(1)
i + εi1 − α1(α

(1))−1ε
(1)
i

= β1X
inc,1
i + ψ0 + ψ1X

inc,2
i + ψ2Y

(1)
i + ε̃i

The excluded variablesXexc
i can be used as instruments for Y (1)

i . So the coefficients β1, ψ0, ψ1, and
ψ2 are identified under an appropriate rank condition from the moments E(ε̃iXi) = 0, E(ε̃i) = 0.
This requires kθ + dim(X inc,2

i ) elements of Xi to be excluded from the equation for Yi1. The
argument is similar the identification argument in Ahn et al. (2013) in a panel data model with a
factor structure. While β is identified by applying this argument for each j, generally ∆Y , Φ, and
α are not identified without further conditions.

3.2 Identification of the full model

Now consider identification of β, α, and Φ given AΦA′ and ∆. One approach is based on an
application of Theorem 2.6. Let A1 = (β(1), α(1)) denote kθ rows of A and let A2 = (β(2), α(2))
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denote the remaining rows. Then

A =

 IdX 0

β(1) α(1)

β(2) α(2)


By Theorem 2.6, ifAΦA′ is identified and if α(1) is full rank then α(2)(α(1))

−1 and β(2)−α(2)(α(1))
−1β(1)

are identified. A similar idea is used in Pudney (1981) and Heckman and Scheinkman (1987) using
an instrumental variable approach (see the supplementary appendix). Heckman and Scheinkman
(1987) showed, for example, that uniformity of the prices of different skills across sectors in a
Gorman-Lancaster model for earnings could be tested using these reduced form parameters.

This shows how exclusion restrictions can be used to identify the coefficients on observed
regressors. Suppose the equations can be reordered so that (a) the sth regressor is excluded from
the kθ equations corresponding to β(1) and (b) α(1) is full rank. The sth column of β(2)−α(2)α

−1
(1)β(1)

is equal to β(s)
(2) − α(2)α

−1
(1)β

(s)
(1) where β(s)

(1) and β(s)
(2) denote the sth columns of β(1) and β(2). Since

β
(s)
(1) = 0 this implies that β(s)

(2) is identified. If this can be done for each 1 ≤ s ≤ dX then the full
coefficient matrix β is identified.

Alternatively, suppose the coefficients on the sth regressor are restricted to be the same across
kθ + 1 equations. Then the rows can be reordered so that β(s)

(1) = bsιkθ and β(s)
(21) = bs for a scalar

bs and the remaining rows, β(22), are unrestricted, where the indices (21) and (22) correspond to
a division of A2 into a single row A21 and its remaining rows A22. First, β(s)

(21) − α(21)α
−1
(1)β

(s)
(1) =

bs(1 − α(21)α
−1
(1)ιkθ). Therefore, if α(1) is full rank, bs(1 − α(21)α

−1
(1)ιkθ) and α(21)α

−1
(1) are both

identified. If, in addition, α(21)α
−1
(1)ιkθ 6= 1, bs is identified. Moreover, β(s)

(22) is identified as well
from β

(s)
(22)−α(22)α

−1
(1)β

(s)
(1) = β

(s)
(22)−α(22)α

−1
(1)bsιkθ since the second term is identified. This argument

does not apply to a standard fixed effects panel model since it requires the factor loadings to vary.
Beyond exclusion restrictions and homogeneity restrictions, identification of β(s) follows more

generally from any restriction of the form Q1sβ
(s) = Q0s if the matrix(

−α(2)α
−1
(1) I

Q1s

)
(12)

has full column rank. Evidently these restrictions can be combined to tailor the identification
approach to the particular model.

When these applications of Theorem 2.6 do not fully identify the objects of interest, restrictions
on the covariance between Xi and θi can also be used. The off-diagonal block of AΦA′ when
written in partitioned form is βΦX + αΦθX . Clearly if ΦθX = 0 then β is identified. But it can
also be seen that if the sth component of Xi is uncorrelated with θi then βΦs

X , a weighted average

21



of the coefficients, is identified. So if some but not all of the components of Xi are uncorrelated
with θi then this result can be combined with the previous results to fully identify β. Or, similarly,
if a weighted sum of the components of Xi is uncorrelated with θi then ΦθXw = 0 for some vector
w so that βΦXw is identified. This is in the spirit of the Hausman and Taylor (1981) approach for
panel data.19

Lastly, if ΦθXΦ
(s)
X = 0 where Φ

(s)
X is the sth column of Φ−1X then the sth column of β is

identified. This is a conditional mean independence assumption. It follows if E∗(θi | Xi) =

E∗(θi | Xi,−s) where E∗ represents the linear projection operator.
The analysis in Section 2 emphasizes the importance of the rank conditions for identification

of ∆ and AΦA′. Identification of βj in equation (1) depends on these rank conditions but also
depends on conditions related to whatever restrictions are used to identify β from AΦA′. When
the latter restriction is that Cov(Xi, θi) = 0 this rank condition is simply that V ar(Xi) is full rank.
When exclusion restrictions are used, as in the interactive fixed effects model, the rank conditions
require that the factor loading matrix corresponding to a particular set of equations be full rank.
And more generally, the rank conditions take the form of equation (12). When the identification
strategy is based on multiple different types of restrictions, a careful analysis of the rank conditions
is particularly important.

3.3 Example

To demonstrate the value of these results I now provide a simple example. Consider a setup with
k = 2 and J = 5 where the first 2 components of Yi correspond to “measurements” while the
remaining correspond to “outcomes”. Correspondingly, assume that β1 = β2 = 0 but that there
are no additional restrictions on β or α. Thus,

Yi1 = α11θi1 + α12θi2 + εi1

Yi2 = α21θi1 + α22θi2 + εi2

Yi3 = β′3Xi + α31θi1 + α32θi2 + εi3 (13)

Yi4 = β′4Xi + α41θi1 + α42θi2 + εi4

Yi5 = β′5Xi + α51θi1 + α52θi2 + εi5

First, suppose the errors, εij , are all mutually uncorrelated so that ∆Y is diagonal, that α sat-
isfies the row deletion property, and that Φ and ΦX are both full rank. Then ∆Y and AΦA′ are
identified by equation (11). Next, let α(1) and β(1) denote the first two rows of α and β and α(2)

19Hausman and Taylor (1981) show that, to identify the coefficient on a time-invariant regressor in a fixed effects
panel model it is sufficient to assume that this regressor or a time series average of another regressor is uncorrelated
with the fixed effect.
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and β(2) the remaining 3 rows. As demonstrated above, if α(1) is full rank then β(2) − α(2)α
−1
(1)β(1)

is identified. Since β(1) = 0, this implies that β(2) is identified. This argument fails, however,
if rank(α(1)) = 1, as might be the case if the second factor is only captured by the behavioral
outcomes and not by the measurements, and β(2) is not identified.

This can be seen through the IV formulation as well. If α(1) is invertible then θi = α−1(1)(Yi(1) −
εi(1)), where Yi(1) = (Yi1, Yi2)

′ and εi(1) = (εi1, εi2)
′. Plugging this into the equation for Yi3,

Yi3 = β′3Xi + α′3α
−1
(1)Yi(1) + εi3 − α′3α−1(1)εi(1)

Identification follows by using (Yi4, Yi5) as an instrument. If, however, α(1) is not full rank then
either Yi4 or Yi5, or both, must be used in proxying for θi. This introduces β′4X or β′5X , or both,
into the reduced form equation and it is not possible to separately identify β3.

Estimation of β is also problematic if α(1) is full rank, but just nearly so. If, for example,
α12 and α22 are both close to 0, then the finite sample distribution of the estimator of β(2) will be
distorted. Figure 1 demonstrates that the effect of weak identification on the distribution of both the
two stage least squares and maximum likelihood estimators. The simulations show a substantial
bias in the weakly identified model.20

One way to ensure that estimation of β is robust to this type of weak identification is to en-
force additional exclusion restrictions if they are available. Suppose, for example, that Xi =

(X ′i1, X
′
i2, X

′
i3)
′ where only Xi1 has nonzero coefficients in the equation for Yi3, only Xi2 does for

Yi4, and only Xi3 for Yi5. Then β is identified, under the conditions already stated – that α satisfies
the row deletion property and Φ and ΦX are full rank. Panels (a) and (b) in Figure 2 demonstrate
how this improves estimation of β even when Xi1, Xi2, and Xi3 are fairly highly correlated. Panel
(c) shows that the weak identification problem rears its head again, however, if they are too highly
correlated. See the supplemental appendix for additional details regarding the simulations.

4 Conclusion

In this paper, I have provided a new framework for understanding identification in factor models.
In doing so, this paper makes several important contributions. I separate the task of identification
into two steps, thus demonstrating what is identified, and under what conditions, without imposing
the sometimes unintuitive normalizations required in the second step. I have shown that there
is an important tradeoff between exogeneity conditions (restrictions on ∆) and rank conditions
(such as the row deletion property) in accomplishing the first step of the identification analysis.

20In the identified model, the 2SLS and MLE estimators both had a bias of 0.03. In the weakly identified model,
the 2SLS and MLE estimators had bias of 0.67 and −0.3, respectively.
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There is similarly a tradeoff in identification of the coefficient on observed covariates additionally
between the restrictions and their related rank conditions. As demonstrated through numerous
examples, this new approach can be used to show that many familiar models are identified under
less restrictive assumptions than what is commonly imposed.
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Appendix

A Proofs

Proof of Theorem 2.1. For each j1, j2 with 1 ≤ j1 ≤ j2 ≤ m, I will (i) show that δj1,j2 is identified
by expressing it as a function of known elements of Σ and (ii) show that σj1,j2 is identified by
expressing it as a function of known elements of Σ. Then ∆ and Σ are identified soAΦA′ = Σ−∆

is as well.
First, if condition (a) holds then δj1,j2 = 0 and σj1,j2 is identified because it is assumed to be

known.
Now, suppose that condition (b) holds. First, σj1,j2 is identified because it is assumed to be

known. Then, let Σ− and ∆− denote the submatrices consisting of rows j1, `1, . . . , `k and columns
j2, `k+1, . . . , `2k. Then, since ∆`1,...,`k;`k+1,...,`2k = 0, ∆j1;`1,...,`k = 0, ∆`k+1,...,`2k;j2 = 0,

Σ− −∆− =

(
σjj − δjj Σj;`k+1,...,`2k

Σ`1,...,`k;j Σ`1,...,`k;`k+1,...,`2k

)

SinceA`1,...,`k andA`k+1,...,`2k are both full rank and Φ is nonsingular, it follows that Σ`1,...,`k;`k+1,...,`2k =

A`1,...,`kΦA
′
`k+1,...,`2k

is nonsingular and the Schur complement formula for the determinant of a par-
titioned matrix can be applied to obtain

0 = det(Σ− −∆−) = det(Σ`1,...,`k;`k+1,...,`2k) (14)

×
(

(σj1j2 − δj1j2)− Σj2;`k+1,...,`2kΣ
−1
`1,...,`k;`k+1,...,`2k

Σ`1,...,`k;j1

)
which implies that

δj1j2 = σj1j2 − Σj2;`k+1,...,`2kΣ
−1
`1,...,`k;`k+1,...,`2k

Σ`1,...,`k;j1

The right hand side is known so δj1j2 and cj1j2 = σj1j2 − δj1j2 are identified.
Lastly, suppose that condition (c) holds. Then δj1j2 = 0 so it is sufficient to show that σj1j2

is identified. Again, let Σ− and ∆− denote the submatrices consisting of rows j1, `1, . . . , `k and
columns j2, `k+1, . . . , `2k. Then ∆− = 0 and Σ`1,...,`k;`k+1,...,`2k = A`1,...,`kΦA

′
`k+1,...,`2k

is nonsingu-
lar so the Schur complement formula for the determinant of a partitioned matrix can be applied to
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obtain

0 = det(Σ− −∆−) = det(Σ`1,...,`k;`k+1,...,`2k) (15)

×
(

(σj1j2)− Σj2;`k+1,...,`2kΣ
−1
`1,...,`k;`k+1,...,`2k

Σ`1,...,`k;j1

)
which implies that

σj1j2 = Σj2;`k+1,...,`2kΣ
−1
`1,...,`k;`k+1,...,`2k

Σ`1,...,`k;j1

The right hand side is known so σj1j2 is identified.

Proof of Theorem 2.3. Consider any indices 1 ≤ j1 ≤ j2 ≤ m. If δj1j2 6= 0 then both corre-
sponding measurements are in the same group, g. Since G ≥ 3, there are two other groups g′

and g′′ distinct from g and from each other. Since Ag′ and Ag′′ are both full rank they must each
have a nonsingular k × k submatrix, denoted A−g′ and A−g′′ , respectively. Suppose A−g′ consists of
rows `1, . . . , `k from A and A−g′′ consists of rows `k+1, . . . , `2k from A. Finally, let Σ− and ∆−

denote the (k+ 1)× (k+ 1) submatrices of Σ and ∆ consisting of rows j1, `1, . . . , `k and columns
j2, `k+1, . . . , `2k. Then det(Σ− − ∆−) = 0 and the only nonzero component of ∆− is δj1j2 since
the others all correspond to intergroup, not intragroup, covariances. This equation can be solved
for δj1j2 since A−g′ΦA

−′
g′′ is nonsingular.

Now I will show that the model with G = 2 is not identified. Let Φ̃ = ρΦ and let Ã1 = A1 and
Ã2 = ρ−1A2. This preserves the covariance structure between the two groups because Ã1Φ̃Ã

′
2 =

A1(ρΦ)(ρ−1A2)
′ = A1ΦA

′
2. Furthermore, ∆̃1 = A1ΦA

′
1 − Ã1Φ̃Ã

′
1 + ∆1 = (1 − ρ)A′1ΦA1 + ∆1

is positive semidefinite and if ∆2 is positive definite then ρ can be chosen close enough to 1 so that
∆̃2 = (1− ρ−1)A2ΦA

′
2 + ∆2 is also positive definite.

Proof of Theorem 2.6. In general, if A1 denotes the first k rows of A and A2 denotes the remaining
rows of A then A2A

−1
1 is identified if A1 and Φ are both invertible because

A2ΦA
′
1(A1ΦA

′
1)
−1 = A2A

−1
1

If A takes the form of equation (8) then

A−11 =

(
Ik1 0

A21 A22

)−1
=

(
Ik1 0

−A−122 A21 A−122

)
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and

A2A
−1
1 =

(
A31 A32

)( Ik1 0

−A−122 A21 A−122

)
=
(
A31 − A32A

−1
22 A21 A32A

−1
22

)
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Figure 1: Estimation based on first set of exclusion restrictions only
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Notes: Two models were simulated 2000 times each. The results summarized in column (a) are from an

identified model (α11 = 1, α12 = 0, α22 = 0.5). The results summarized in column (b) are from a weakly

identified model (α11 = 1, α12 = 0, α22 = 0.2). In each column, the distribution of the two stage least

squares estimator is in the top panel and the distribution of the maximum likelihood estimator is in the

bottom panel. To improve presentation of the results, the histograms in column (b) are truncated; roughly

5% of the sample is dropped in the top panel and 1% in the bottom panel. All simulations were based on a

sample size of n = 1000. The true value of the parameter was 1. See the appendix for more details.

Figure 2: Estimation based on both sets of exclusion restrictions
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Notes: Three models were simulated 2000 times each. The results summarized in panel (a) are from a

weakly identified model and are based only on the first set of exclusion restrictions. The results summarized

in columns (b) and (c) use both sets of exclusion restrictions but are based on a model with the same factor

loadings. In the model simulated for column (b), corr(Xij , Xij′) = 0.8. In the model simulated for column

(c), corr(Xij , Xij′) = 0.999. To improve presentation of the results, the histograms in columns (a) and (c)

are truncated; roughly 1% of the sample is dropped in panel (a) and .3% in panel (c). In each case, the

distribution of the maximum likelihood estimates is plotted. All simulations were based on a sample size

of n = 1000. The true value of the parameter was 1 and the means of the three distributions were 0.7023,

0.9993, and 0.4392, respectively. See the appendix for more details.
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