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Abstract

In this paper I study identification of a nonseparable model with endogeneity arising

due to unobserved heterogeneity. Identification relies on the availability of binary

proxies that can be used to control for the unobserved heterogeneity. I show that the

model is identified in the limit as the number of proxies increases. The argument does

not require an instrumental variable that is excluded from the outcome equation nor

does it require the support of the unobserved heterogeneity to be finite. I then propose

a nonparametric estimator that is consistent as the number of proxies increases with

the sample size. I also show that, for a fixed number of proxies, nontrivial bounds on

objects of interest can be obtained. Finally, I study two real data applications that

illustrate computation of the bounds and estimation with a large number of items.
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1 Introduction

This paper considers how multiple binary measurements or proxies can be used to con-

trol for latent heterogeneity in a nonseparable model. I assume a model Y = g(X, θ, U)

where θ ∈ R and U are both unobserved, and I assume access to binary proxies of θ, de-

noted M1, . . . ,MJ+1. I study nonparametric identification of an average structural function,

E(g(x, t, U)) without imposing restrictions on the dependence between X and θ.

This empirical problem arises in many applications in economics. Responses to individual

questions on an exam are binary proxies for latent ability. Responses to each item on a per-

sonality test or psychological assessment are proxies for a particular latent trait. Responses

to items on opinion surveys are proxies for an underlying attitude or belief. Heckman et al.

(2006a) and Spady (2007) are typical examples of the use of such data in economics. See

Almlund et al. (2011) on the role of the psychology of personality in economics. The binary

proxies could also consist of other outcomes that are driven by the same latent variable. For

example, in models of legislative roll call voting (Clinton et al., 2004; Heckman and Sny-

der, 1997; Poole and Rosenthal, 1985, 1997), separate votes are considered binary proxies of

latent legislator preferences.

Binary proxies may also arise in measuring economic primitives that vary across economic

agents. Bloom and Van Reenen (2007), for example, use discrete responses to survey items to

measure the managerial productivity of firms. They aggregate these responses and use this

to control for managerial productivity in estimating a production technology. In this context,

X represents observed inputs, θ represents the unobserved managerial productivity, and U

represents the residual variation in productivity. Three important features of this model are

addressed in this paper. First, managerial productivity varies continuously while the survey

items are discrete. Second, managerial productivity is likely correlated with observed inputs

if the latter are chosen optimally. Third, responses to the questions on the survey may be

affected by observed inputs conditional on managerial productivity.

There are several common approaches to measuring and controlling for latent variables

when only binary proxies are available. One approach that is common is to control for

the latent variable by conditioning on an average of the proxies or another aggregation of

the proxies, such as an estimate from a parametric item response model.1 This is typically

done ad hoc – plugging estimates from one model into another model – and is often not

justified theoretically. One contribution of this paper is to provide conditions under which

1Item response models are similar to random effects models for binary choice panel data. The binary
responses to each item are modeled jointly as a function of the latent variable, item-specific parameters,
and idiosyncratic item-specific shocks. These are typically estimated using maximum likelihood or other
likelihood-based methods. See van der Linden and Hambleton (2013) or Lord (1980).
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this practice can be justified.

More formal approaches involve jointly modeling the economic outcome and the binary

proxies, assuming that these are conditionally independent given the latent variable (and

observed covariates). In some cases, the latent variable is restricted to have a finite support

(Gawade, 2007; Hu, 2008; Mahajan, 2006). This is a restriction on the dependence between

the latent variable and the observed covariates. Alternatively, parametric restrictions on

the structure of the model can be sufficient to achieve identification without restricting the

support of the latent variable. This approach is common in empirical work and is analogous

to the correlated random effects model for panel data (see, for example, Junker et al., 2012).

The model studied in this paper does not impose a finite support for the latent variable,

any other restrictions on the dependence between the latent variable and observed covariates,

or any parametric structure in the model. Carneiro et al. (2003) provide an important

identification result for this model. Their result uses exogenous variation in an instrumental

variable that is excluded from the outcome equation to identify the distribution of choice-

specific outcomes and a large support condition and additive separability to identify the

joint distribution of outcomes and the latent variable. This paper provides an alternative

identification strategy that does not require an instrument, additive separability, or large

support conditions.

The identification problem consists of two parts. The first part deals with the fact that

the proxies are binary while the latent variable is continuous. If the proxies are independent

of observed covariates conditional on the latent variable and θ ∼ Uniform(0, 1) then the

percentile of the average of the J proxies converges to θ as J →∞. As a result, the model

is point identified in the limit as J → ∞ as variation in θ can be obtained from variation

in this percentile score. Thus, the support of θ can be infinite because this percentile score

varies continuously in the limit. The second part of the identification problem arises when

observed covariates that are present in the structural outcome equation are also present in the

equations for the proxies. As a result, the proxies are not independent of observed covariates

conditional on the latent variable and, even when J is large, the percentile of the average

of the proxies is no longer a valid estimate of the latent variable. To solve this problem, I

assume that one of the binary proxies, Mj0 , is independent of the observed covariates, X,

conditional on θ.2 I show that under this exclusion restriction E(Mj0 | M̄,X) ≈ E(Mj0 | θ)
for large J , where M̄ = J−1

∑
j 6=j0 Mj. Thus, in the limit, variation in θ can be obtained

by varying the percentiles of this conditional expectation if E(Mj0 | θ = t) is a strictly

2This is different than the usual exclusion restriction satisfied by an instrumental variable. It also differs
from the type of restriction discussed by Carneiro et al. (2003) where a covariate that enters the latent index
for one proxy is excluded from the outcome equation and from the latent index for all other proxies.
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monotonic function and θ ∼ Uniform(0, 1). I also demonstrate how the proxies can be used

to construct other estimates of θ that purge the proxies of X under alternative restrictions

on the model.

The exclusion restriction is satisfied in many common applications. For example, suppose

the binary proxies are the individual questions on a test of ability. Responses to questions

on the test are likely affected by the individual’s educational level at the time of the test

conditional on ability (Hansen et al., 2004). However, if one question requires only basic

knowledge it is plausible that this item does not depend on education at the time of the test

conditional on ability, provided that all individuals in the sample have obtained a minimal

level of schooling.

I demonstrate the methods developed in this paper through two empirical illustrations.

For the first illustration, I use recently released question-level data on the Armed Forces Qual-

ifying Test from the National Longitudinal Survey of Youth (NLSY79). I use the methods

developed in this paper to estimate the effect of education on responses to individual ques-

tions on the test. In a second empirical application, I revisit an influential paper on the civic

returns to education (Dee, 2004). As argued by Dee (2004), schooling is determined in part

by individual traits that are potentially correlated with another trait – “civic-mindedness”

– that influences later behaviors such as whether the individual votes. Using the methods

developed in this paper and data on civic-related behavior, I construct bounds on the effect

of education on voting behavior at different points in the distribution of the latent trait.

The remainder of the paper is organized as follows. In Section 2, I lay out a general model

and present the main identification and estimation results for large J . In Section 3, I present

the empirical illustration of the large J methods. In Section 4, I discuss some extensions

of the model. In Section 5, I show that bounds on objects of interest can be constructed

from moment conditions, study these bounds numerically in a few examples, and present an

empirical illustration. Section 6 concludes.

2 Large J identification and estimation

In this section, I first outline the general model and discuss the main assumptions. I then

state and discuss the main identification result. Finally I propose an estimator and describe

its asymptotic properties.

The outcome variable is Y and X denotes a vector of observed covariates with finite

support, X . I assume that

Y = g(X, θ, U), (2.1)
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where θ and U are both unobserved and g is an unknown function. No restrictions will be

placed on the dimension of U but θ is assumed to be scalar.3 In addition, I assume the

availability of binary proxies, M = (M1, . . . ,MJ+1) such that, for each j = 1, . . . , J + 1,

Mj = 1(hj(X, θ) ≥ εj). (2.2)

where εj is a scalar unobservable and the function hj is known.

While existing methods, such as Carneiro et al. (2003), impose additive separability in

equation (2.1), I show identification without such a restriction. Nonseparability in equa-

tion (2.1) is important as it allows ceteris paribus effects of X on Y (e.g., g(x′, θ, U) −
g(x, θ, U)) to vary with the unobservables θ and U . The prevalence of unobserved het-

erogeneity in the effects of choices, actions, or treatments has been widely recognized by

economists (e.g., Heckman, 2001; Heckman et al., 2010), as well as in other areas of research

(see, for example, Longford, 1999).

The average structural function (ASF), defined by Blundell and Powell (2003) is given

by
∫
g(x, t, u)dFθ,U(t, u). I define the conditional average structural function (CASF) as the

mean outcome averaging only over U , that is,
∫
g(x, t, u)dFU(u).4 The CASF describes how

the structural function varies with θ, averaging out the other components of the unobserved

heterogeneity, U . These two structural functions are the main objects of interest throughout

this paper.

I maintain the following assumptions. I use the notation “⊥⊥” here and throughout the

rest of the paper to denote independence. Let Θ denote the support of the distribution of θ

and, for each x ∈ X , let Θ(x) denote the support of the conditional distribution of θ | X = x.

Assumption 2.1. U ⊥⊥ (X, θ).

Assumption 2.2. For each x ∈ X , Θ(x) = Θ.

These assumptions are sufficient for identification of both the ASF and the CASF from the

distribution of (Y,X, θ) (cf. Matzkin, 2003, 2004). Indeed, under Assumption 2.1, the CASF

is given by G(x, t) := E(Y | X = x, θ = t). Moreover, for any x ∈ X , under Assumption 2.2,

G(x, t) is defined for every t ∈ Θ. Therefore, the ASF is given by
∫
G(x, t)dFθ(t).

5 Thus,

3See Williams (2013) for a version of this model that allows multidimensional θ.
4This is similar to the definition of the CASF in Klein (2013).
5In many settings, X = (X1, X2) where X1 is a scalar regressor of interest and X2 is a vector of “con-

trol variables.” In this setting, Y = g(X, θ, U) and Assumption 2.1 would be replaced by the conditional
independence assumption, U ⊥⊥ (X1, θ) | X2. Then the object of interest would be E(g(x1, X2, t, U)), which
would be identified from

∫
E(Y | X = x, θ = t)dFX2(x2) if θ were observed. The results in this paper are

still relevant for identification of the conditional expectation function E(Y | X = x, θ = t) in this case.
However, I do not explore how additional restrictions on the role of the control variables, X2, might improve
identification.
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the identification problem is reduced to whether the conditional expectation function G(x, t)

and the distribution function Fθ can be identified from the distribution of (Y,M,X).

Assumption 2.1 can be justified by an economic model where X is a choice made under

imperfect information that includes θ but not U . In the empirical application in Section 3, Y

will denote one of the items on the test while M denotes the remaining items, X denotes years

of completed schooling at the time of the test, and θ denotes the underlying ability measured

by the test. In this case, the assumption is satisfied provided that U represents idiosyncratic,

item-specific knowledge that does not influence the individual’s educational choices. In the

application at the end of Section 5, X denotes years of schooling, Y is a measure of voting

behavior and θ denotes “civic-mindedness”. The independence assumption can be justified

by a model where U denotes factors not determined by the time schooling decisions are made

nor dependent on any relevant information that is available at that time.

One advantage of the approach taken in this paper relative to an instrumental variable

approach is the ability to identify how structural effects vary with θ. That is, I show identi-

fication of the CASF, not just the ASF. While identification of the ASF would require only

that X is conditionally independent of U given θ, I maintain Assumption 2.1 in order to

show identification of the CASF as well.

Next, I normalize the distribution of θ.

Assumption 2.3. θ ∼ Uniform(0, 1).

Because there is no observed information on the scale of θ, some normalization in the model

is necessary in order to identify G(x, t). Otherwise any monotonic transformation of θ

would define an observationally equivalent model. Alternative normalizations in the model

are possible, as discussed in Section 4. This is analogous to the role of location and scale

normalizations in traditional parametric models where θ enters linearly. On the other hand,

no such normalization is necessary for identification of the ASF (see Corollary 2.1).

There is a more fundamental problem with identification in this model that may be less

apparent and that remains after imposing Assumption 2.3. Namely, it is possible to define

an observationally equivalent model based on θ̃ = H(X, θ) where H(x, ·) is a monotonic

transformation for each x ∈ X and θ̃ is uniformly distributed on the interval [0, 1]. While

the transformation does not change the marginal distribution, it can be done in such a way as

to change the distribution conditional on X dramatically. For example, suppose H(x, ·) is the

conditional distribution function, H(x, t) = Fθ|X(t | x). Then θ̃ | X = x ∼ Uniform(0, 1).

That is, any model satisfying Assumptions 2.1-2.3 with dependence between θ and X is

observationally equivalent to another model satisfying these assumptions with θ independent

of X.
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In order to resolve this problem, I consider models that satisfy an exclusion restriction.

Before stating the assumption, I define, for each j, the reduced form conditional response

functions as pj(x, t) := Pr(Mj = 1 | X = x, θ = t) = Fεj |X,θ(hj(x, t) | x, t). The following

assumption states that one of these conditional response functions is invariant to x.

Assumption 2.4. For some 1 ≤ j0 ≤ J + 1, for every x ∈ X , pj0(x, t) = pj0(t) for all

t ∈ [0, 1].

This assumption is satisfied if hj0(x, t) = hj0(t) and εj0 ⊥⊥ X | θ. Under this restriction,

one of the J binary proxies does not depend on X conditional on θ. Suppose that X

denotes years of schooling at the time a test is administered, that everyone in the sample

had attained a minimal level of schooling at the time of the test, and one particular question

on the test pertains to knowledge that would have been accumulated before that minimal

level of schooling. Then this question would satisfy the exclusion restriction.

Timing is also used to justify the exclusion restriction in the civic returns application.

The population studied is a representative sample of high school sophomores in 1980. In

the first survey these individuals were all asked a question related to their sense of civic

responsibility. Responses to this question do not depend on whether they finished high

school or attended college conditional on the underlying “civic-mindedness” trait. The other

proxies used are measured later and hence may depend on whether the individual attended

college. In Section 4, I show how Assumption 2.4 can be replaced by alternative restrictions.

I next impose the following conditional independence assumption.

Assumption 2.5. (U, ε1, . . . , εJ) are mutually independent conditional on (X, θ).

This implies that (Y,M1, . . . ,MJ) are mutually independent conditional on (X, θ). This

assumption is imposed in Carneiro et al. (2003), as well as in many models of measurement

error (Chen et al., 2011) and item response models (Sijtsma and Junker, 2006).6 This

assumption is relaxed by Assumption 2.8 below.

Next, I assume two monotonicity conditions.

Assumption 2.6.

(i) pj0(·) is strictly increasing.

(ii) For each x ∈ X ,
∑J+1

j=1 pj(x, ·) is strictly increasing.

Condition (i) requires a monotonic relationship between θ and the probability of a positive

response on the proxy, j0, that satisfies the exclusion restriction, Assumption 2.4. Under

6Note that the model of equations (2.1) and (2.2) can be viewed as a nonstandard measurement error
problem where θ is the “mismeasured” covariate.
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condition (ii) the average of the J + 1 reduced form conditional response functions is strictly

increasing but individual response functions do not have to be strictly increasing. Thus, this

assumption allows for limited nonmonotonicity in the response functions. As Sijtsma and

Junker (2006) note, this is important in item response data, such as test scores. In the roll

call voting example this may be important if, for example, the most liberal and the most

conservative members vote together on a small fraction of bills. Condition (ii) is relaxed

further by Assumption 2.9 below.

Let p̄(x, t) = J−1
∑

j 6=j0 pj(x, t). Under Assumption 2.6, this function is strictly increasing

in t for each x. Therefore, the inverse function p̄−1(m;x) can be defined on the range of p̄(x, ·).
That is, for each x ∈ X and each m in the range of p̄(x, ·) there is a unique t∗, which depends

on x and m, such that p̄(x, t∗) = m; I denote this t∗ by p̄−1(m;x). Likewise, under condition

(i) of Assumption 2.6 p−1
j0

is uniquely defined on the range of pj0 . Because pj0 and p̄(x, ·)
are each defined on the interval [0, 1], the inverse functions can naturally be extended to

be defined on [0, 1]. For m < pj0(0), let p−1
j0

(m) = 0 and for m > pj0(1), let p−1
j0

(m) = 1.

Likewise, for m < p̄(x, 0), let p̄−1(m;x) = 0 and for m > p̄(x, 1), let p̄−1(m;x) = 1.

Lastly I impose the following Lipschitz conditions.

Assumption 2.7. There are constants 0 < c < C <∞ such that

(i) |G(x, t′)−G(x, t)| ≤ C|t′ − t| for all x ∈ X and t, t′ ∈ Θ(x),

(ii) c|t′ − t| ≤ |pj0(t′)− pj0(t)| ≤ C|t′ − t| for all t, t′ ∈ [0, 1],

(iii) for each J ≥ 1, c|t′ − t| ≤ |p̄(x, t′)− p̄(x, t)| ≤ C|t′ − t| for all x ∈ X and t, t′ ∈ Θ(x),

(iv) c|t′ − t| ≤ |Fθ|X(t′ | x)− Fθ|X(t | x)|, for all x ∈ X and t, t′ ∈ Θ(x), and

(v) infx∈X Pr(X = x) ≥ c.

Conditions (ii) and (iii) imply that the inverse functions p−1
j0

and p̄−1 are Lipschitz con-

tinuous. Condition (iv) implies that the quantile function Qθ|X(· | x) is Lipschitz continuous.

This assumption is relaxed in Section 2.4.

2.1 Identification

To formally define the notion of identification in the limit that is used, first let P0
J denote the

true population distribution of (Y,M1, . . . ,MJ+1) | X. For γ = (g, h1, . . . , hJ+1, FU,ε1,...,εJ+1|X,θ,

Fθ|X), let PJ(γ) denote the distribution given by

∫
1(g(x, t, u) ≤ y)

J+1∏
j=1

1(hj(x, t) ≥ εj)
mj(hj(x, t) < εj)

1−mjdFU,ε1,...,εJ+1|X,θdFθ|X . (2.3)
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Let γ0 = (g0, h1,0, . . . , hJ+1,0, F
0
U,ε1,...,εJ+1|X,θ, F

0
θ|X) denote the true parameter values so that

P0
J = PJ(γ0). A parameter value γ is observationally equivalent to γ0 if PJ(γ) = PJ(γ0).

Let ΓJ denote the parameter space, which is restricted by the assumptions of the model.

In particular, there are fixed constants 0 < c < C <∞ such that the conditions in Assump-

tion 2.7 hold for all γ ∈ ΓJ , for all J ≥ 1. Then, for any feature of the model defined by

τ = τ(γ) let

IJ(γ0; τ(·)) = {τ(γ) : γ ∈ ΓJ ,PJ(γ) = PJ(γ0)}. (2.4)

In Section 5 I consider computation of this identified set through an approximation of the

integrals in (2.3). As J grows, the identified set shrinks. Formally, τ0 = τ(γ0) is said to be

large J identified if

lim
J→∞

sup
γ0∈ΓJ

sup
τ∈IJ (γ0;τ(·))

||τ − τ0|| = 0. (2.5)

Theorem 2.1. The CASF is large J identified under Assumptions 2.1 and 2.3-2.7.

Proof. See Appendix A.

Remark 1: Under Assumption 2.1 the CASF is given by G(x, t), which is a function on X×Θ.

In applying the definition (2.5) I use the sup norm, ||G − G0|| = supx∈X ,t∈Θ0(x) |G(x, t) −
G(x, t)| where Θ0(x) denotes the support of the distribution F 0

θ|X(· | x).

Remark 2: In the proof of Theorem 2.1, a bound on the rate of convergence of the identified

set is also derived. It is shown that the size of the identified set is bounded by O(J−1/2+ε) for

all ε > 0.

Remark 3: Note that Assumption 2.6 rules out a model with

Mj = 1(θ > cj(X)) (2.6)

for each j because in that case p̄(x, t) is piecewise constant in t for each x. However, it can

be shown that, under certain conditions on the thresholds {cj(·)}, the CASF is still large J

identified (Williams, 2012). Essentially what is required is that cj(x) varies enough with j

for each x.

A fundamental idea behind Theorem 2.1 has been used in the nonparametric item re-

sponse literature (Junker and Ellis, 1997) and has roots in earlier work in statistics (de Finetti,

1931; Diaconis and Freedman, 1980). The idea is that M̄ := J−1
∑

j 6=j0 Mj can serve as a sort

of sufficient statistic for the latent heterogeneity. Douglas (2001) used this idea to formally
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prove nonparametric identification of the standard item response model.7

In Lemma A.1 in the appendix, I use Hoeffding’s inequality to show that, under Assump-

tion 2.5, M̄ − p̄(X, θ) →p 0. Consider any x ∈ X and t ∈ Θ(x). In Lemma A.4 in the

appendix I also show that if |m− p̄(x, t)| ≤ rJ/2 then

lim
J→∞

E(Y | |M̄ −m| < rJ , X = x)−G(x, t) = 0 (2.7)

for a sequence rJ → 0. As similar result is shown in Douglas (2001) though the observed

covariates, X, are not present in that paper.

Likewise, in the proof of Lemma A.5 in the appendix it is shown that if |m−p̄(x, t)| ≤ rJ/2

then

lim
J→∞

Pr(Mj0 = 1 | |M̄ −m| < rJ , X = x)− pj0(t) = 0 (2.8)

for a sequence rJ → 0. This is then used to show that, for any m in the range of p̄(x, ·),

lim
J→∞

Pr(T (M̄,X) ≤ T (m,x))− p̄−1(m;x) = 0 (2.9)

where T (m,x) := Pr(Mj0 = 1 | |M̄ − m| < rJ , X = x). Intuitively, (2.9) follows because

(2.8) implies that T (m,x) ≈ pj0(p̄−1(m;x)) and hence

Pr(T (M̄,X) ≤ T (m,x)) ≈ Pr(pj0(p̄−1(M̄ ;X)) ≤ pj0(p̄−1(m;x))) (2.10)

≈ Pr(pj0(p̄−1(p̄(θ,X);X)) ≤ pj0(p̄−1(m;x)))

= Pr(pj0(θ) ≤ pj0(p̄−1(m;x)))

= p̄−1(m;x).

Now, let S1(m,x) = E(Y | |M̄ − m| < rJ , X = x) and S2(m,x) = Pr(T (M̄,X) ≤
T (m,x)) and suppose, for the sake of argument, that S2 is invertible in m. Then

|S1(S−1
2 (t;x), x)−G(x, t)| ≤ |S1(S−1

2 (t;x), x)−G(x, p̄−1(S−1
2 (t;x);x))| (2.11)

+ |G(x, p̄−1(S−1
2 (t;x);x))−G(x, p̄−1(p̄(x, t);x))|.

But S2 is not invertible since, for a fixed J , the support of M̄ is finite. Thus the proof of

Theorem 2.1 involves showing (a) that a similar expansion still holds (b) that the convergence

7Douglas (2001) formalizes an idea used in the psychometrics literature (Douglas, 1997; Ramsay, 1991)
to nonparametrically estimate item response functions. This result has not previously received attention in
the econometrics literature.
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in (2.7) holds uniformly so that the first term in this expansion converges to 0, and (c) that

the convergence in (2.9) and continuity of G(x, p̄−1(m;x)), as a function of m, imply that

the second term in the expansion converges to 0.

The argument in (2.10) demonstrates the importance of the exclusion restriction and the

monotonicity of pj0 . Because T (M̄,X) ≈ pj0(θ), which does not depend on X, individuals

can be ordered based on this “score”, rather than on M̄ . In Section 4 I show how alterna-

tive restrictions can be used to derive different “score” functions. This heuristic argument

also suggests two corollaries to Theorem 2.1. First, under the common support condition,

Assumption 2.2, the ASF, which is given by
∫
G(x, t)dFθ(t), is identified without Assump-

tion 2.3. That is, to identify the average (across the distribution of θ) structural function it

is not necessary to normalize the distribution of θ. In this case, the argument is based only

on equations (2.7) and (2.8).

Second, if the exclusion restriction (Assumption 2.4) holds for p̄ rather than any par-

ticular pj then the CASF is large J identified through a simpler argument. In this case,

equation (2.9) can be replaced by

lim
J→∞

Pr(M̄ ≤ m)− p̄−1(m;x) = 0. (2.12)

The two following corollaries are proved in Appendix A.

Corollary 2.1. Suppose that (i) there is a constant Ȳ < ∞ such that |Y | ≤ Ȳ and (ii) θ

has a distribution function Fθ such that |Fθ(t′) − Fθ(t)| ≤ C|t′ − t| for all t, t′ ∈ R. Then,

under Assumptions 2.1, 2.2, 2.4 and 2.5-2.7, the ASF is large J identified.

Corollary 2.2. If p̄(x, t) = p̄(t) for all x ∈ X and t ∈ [0, 1] then the CASF is large J

identified under Assumptions 2.1, 2.3 and 2.5-2.7.

2.2 Estimation

Consider an i.i.d. sample (Yi, Xi,Mi,1, . . . ,Mi,J+1), i = 1, . . . , n from the model of equations

(2.1) and (2.2). In this section I propose an estimator for the conditional average structural

function, CASF (x, t), that is consistent as n, J → ∞ provided that J is on the order of a

power of n. The estimation strategy is to estimate θi for each i = 1, . . . , n in a first stage

and to use these estimates, θ̂1, . . . , θ̂n, in place of θ1, . . . , θn in a second stage.

First, recall the intuition behind Theorem 2.1. As J → ∞, the conditional proba-

bility function, Pr(Mi,j0 = 1 | M̄i = m,Xi = x) converges to the function q(x,m) :=

pj0(p̄−1(x,m)). Further, q(Xi, M̄i) ≈ pj0(θi) for large J and, since θi ∼ Uniform(0, 1),
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Fq(X,M̄)(q(Xi, M̄i)) ≈ θi where Fq(X,M̄) denotes the distribution function of the random vari-

able q(Xi, M̄i). This argument suggests the estimator

θ̂i = F̂q̂(X,M̄)(q̂(Xi, M̄i)) (2.13)

where q̂(x,m) is the following Nadaraya-Watson kernel estimator of Pr(Mi,j0 = 1 | M̄i =

m,Xi = x)

q̂(x,m) =

∑n
i=1 Mi,j0Kh1(M̄i −m,Xi − x)∑n

i=1 Kh1(M̄i −m,Xi − x)
, (2.14)

where Kh(u, x) = h−1K(h−1u)1(Xi = x) for a kernel function K(·) and bandwidth h, and

F̂q̂(X,M̄) is the empirical distribution function

F̂q̂(X,M̄)(p) =
1

n

n∑
i=1

1(q̂(Xi, M̄i) ≤ p). (2.15)

My proposed estimator for G(x, t) is

Ĝ(x, t) =

∑n
i=1 YiLh2(θ̂i − t,Xi − x)∑n
i=1 Lh2(θ̂i − t,Xi − x)

(2.16)

where Lh(u, x) = h−1L(h−1u)1(Xi = x) for a kernel function L(·) and bandwidth h.

To demonstrate the type of estimation results that can be obtained for the model, I derive

a bound on the convergence rate of the estimator ĥ(x, t). New results due to Mammen et al.

(2012) on nonparametric estimation with regressors generated in a first stage suggest that

the convergence rates derived here could be improved under certain smoothness conditions.

However, because the conditions in that paper cannot be directly applied in the model of

this paper, and since the primary focus of this paper is identification, I leave this to future

research.

Theorem 2.2. Under the assumptions maintained in Theorem 2.1 and Assumptions C.1-C.6

stated in Appendix C in the supplementary material,

|Ĝ(x, t)−G(x, t)| = Op

(
1√
nh2n

+ h2n

)
.

If J < κn−2/3 for some κ > 0 then the bandwidths can be chosen so that Ĝ converges at a

rate no slower than n−1/3+ε for any ε > 0.

Proof. See Appendix C in the supplementary material.
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2.3 Monte Carlo

To demonstrate the performance of the proposed estimator I carried out a Monte Carlo

exercise. The simulations were based on the model Yi = 0.5Xi + 0.5θ̃i + Ui where Ui ∼
N(0, σ2

U), σU = 0.1. The observed covariate X is binary with Pr(Xi = 1) = 0.5 and

θ̃i | Xi = x ∼ N(x − .5, 1). The proxies are generated according to M1 = 1(θ̃i ≥ ηi1) and

Mj = 1(−0.5X + θ̃i ≥ ηij) for j > 1 with ηij ∼iid N(0, 1). This fits the model of Section 5

with θi = Fθ̃(θ̃i).

In the simulations I calculate the estimator proposed above in Section 2.2, Ĝ(x, t), for

x = 0, 1 and t ∈ T = {.05, .1, . . . , .95}. Since θ ∼ Uniform(0, 1), 1
10

∑
t∈T Ĝ(1, t) −

Ĝ(0, t) provides an approximation of the average treatment effect, ATE =
∫
G(1, t)dFθ(t)−∫

G(0, t)dFθ(t). Further refining the grid did not change the overall results.

Table 1 reports the results of the simulations. I provide results from three other estimators

for comparison. For the first column the ATE was estimated, without controlling in any

way for θ, simply as Ê(Yi | Xi = 1)− Ê(Yi | Xi = 0). For the second column I estimated a

nonparametric kernel regression of Yi on the percentiles of M̄i. I computed these estimates

on the grid T and averaged to get an estimate of the ATE. The third column shows results

from the infeasible estimator that uses θi directly.

Overall the results suggest a substantial improvement over methods that do not properly

control for θi, even when J = 10. However, there is a non-negligible bias when J is small.

The simulation exercises also demonstrate that increasing J leads to a bigger improvement

in the MSE when n is larger. And increasing n leads to a bigger improvement in the MSE

when J is larger.

2.4 Large J identification under weaker conditions

The CASF is large J identified under conditions weaker than Assumptions 2.5-2.7, although

the convergence is at a slower rate and the proof is considerably more complex. First,

conditional independence is too strong in some applications. Consider instead the following

weak dependence assumptions.

Assumption 2.8.

There exists a decreasing sequence {αk : k ≥ 1} with limk→∞ αk = 0 such that

(i) E (|E(Mj | X, θ, {Ms : |j − s| > k})− E(Mj | X, θ)|) ≤ αk and

(ii) for any η ∈ (0, 1/2), there exist J J
Y (η) ⊂ {1, . . . , J} for each J such that |J J

Y (η)|−1 =
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O(J−1) and

E
(
|E(Y | X, θ, {Mj : j ∈ J J

Y (η)})− E(Y | X, θ)|
)
≤ αbηJc.

Condition (i) is a mixing condition on the sequence M1, . . . ,MJ conditional on (X, θ).

Mixing conditions are a standard way to model (unconditional) dependence in time series

data.8 Thus, this is a natural notion of dependence in a setting where the Mj are realized

consecutively. For example, if Mj represents the response to the jth item on a test there

may be dependence between consecutive questions due to factors other than the individual’s

ability level, such as learning from the test.

Condition (ii) allows for various forms of dependence between Y and some of the binary

proxies conditional on (X, θ). If Y is independent of only a subset of the proxies conditional

on (X, θ) this condition requires only that this subset grows with J . Alternatively it allows

for Y to be dependent on all of the proxies provided that the dependence is weak in a specific

sense. It allows for the case, for example, where Y is itself one of the proxies. In that case

J J
Y (η) is {s : |j − s| > ηJ} so that |J J

Y (bηJc)| ≥ (1− 2η)J . Performance on a test may call

on basic skills, represented by θ, as well as various specific pieces of knowledge. Condition

(i) specifies the sense in which these specific pieces of knowledge cannot dominate the test.

Condition (ii) allows some of these individual factors to influence the outcome (wages, for

example).

Both conditions in Assumption 2.5 could also be replaced by lower level conditions related

to the structure in equations (2.1) and (2.2). For example, if (X, θ) is independent of

(ε1, . . . , εJ) then condition (i) could be replaced by a mixing condition on {εj : 1 ≤ j ≤ J}.
And if U is independent of (X, θ) conditional on (ε1, . . . , εJ) then condition (ii) can be stated

in terms of weak dependence between U and (ε1, . . . , εJ). See de Jong and Woutersen (2011)

for related results in a dynamic time series binary choice model.

Next, consider the following monotonicity conditions in place of Assumption 2.6.

Assumption 2.9.

(i) pj0(·) is strictly increasing on [0, 1].

(ii) There exists a constant η > 0, and subsets J J
m ⊂ J J

Y (η) ∩ {1 ≤ j ≤ J : |j0 − j| > ηJ}
for each J , such that |J J

m|−1 = O(J−1) and, for each x ∈ X ,
∑

j∈J J
m
pj(x, ·) is strictly

increasing.

8If the time series process {qt} is strongly mixing with mixing coefficients αt,k then it can be shown that
E|E(qt | {qs; |t− s| > k})−E(qt)| ≤ αt,k where supt αt,k → 0 (Dvoretzky et al., 1972; McLeish et al., 1975).
Processes with m-dependence and ARMA processes are examples of processes that are strongly mixing.
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Condition (i) is the same as condition (i) of Assumption 2.6. Condition (ii) states

that, once items near j0, items not indexed by j in J J
Y (η), and a limited number of other

items are excluded, the average of the remaining items is a strictly increasing function,

and that the number of remaining items is proportional to J . Let NJ := |J J
m| and rede-

fine p̄(x, t) := N−1
J

∑
j∈J J

m
pj(x, t). Under condition (ii) of Assumption 2.6, this function is

strictly increasing in t for each x. Therefore, the inverse function p̄−1(m;x) can be defined

on [0, 1] as before.

Lastly I impose the following regularity conditions, which weaker Lipschitz continuity to

continuity.

Assumption 2.10. (i) G(x, t) is continuous in t for each x ∈ X , (ii) pj0 and p−1
j0

are

both continuous, (iii) p̄(x, t) is continuous in t for each J and each x ∈ X and p̄−1(m;x)

is continuous in m for each J and each x ∈ X , (iv) the quantile function, Qθ|X(τ | x),

is defined for all τ ∈ [0, 1] and is uniformly continuous in τ for each x ∈ X , and (v)

infx∈X Pr(X = x) ≥ c.

A slightly stronger version of these regularity conditions, stated as Assumption A.1 in

Appendix A, is needed to control the continuity of functions in the identified set as J →
∞. Assumption 2.7 by itself does not prevent the limiting identified set from containing

discontinuous functions, which would prevent identification in the limit. Assumption A.1

requires ΓJ to be constructed from uniformly equicontinuous families of functions, just as

it was assumed for Theorem 2.1 that for each γ ∈ ΓJ the relevant functions were Lipschitz

continuous with the same Lipschitz constants.

Theorem 2.3. The CASF is large J identified under Assumptions 2.1, 2.3-2.4, 2.8-2.10,

and A.1.

Proof. See Appendix A.

Remark 4: The rate of convergence of the identified set is slower than the O(J−1/2+ε) at-

tained under the assumptions of Theorem 2.1. The convergence rate depends on the rate

of convergence of the mixing coefficients, αk, and the smoothness of the functions in the

parameter space ΓJ .

3 Education, ability, and test scores

There is substantial evidence that education can improve performance on tests of cognitive

ability (see, e.g., Neal and Johnson, 1996; Winship and Korenman, 1997). Education, how-

ever, is endogenous if higher ability individuals achieve higher education levels on average.
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Hansen et al. (2004) propose two methods for dealing with this endogeneity, both of which

are derived from a model that allows the mapping between latent ability and test scores to

depend on the schooling level at the time of the test. One involves jointly modeling educa-

tion and test scores in a parametric model and is closely related to Carneiro et al. (2003).

The other is a semiparametric control function method that relies on the assumption that

schooling at the time the test is taken is independent of latent ability conditional on the final

education level obtained.

In this section, I use data from the National Longitudinal Survey of Youth (NLSY) to

study the effect of education on test scores using the methods described in Section 2. The

NLSY is a representative sample of individuals from the United States between the ages

of 14 and 21 in 1979, when they were first interviewed. In 1980, these individuals were

administered the Armed Services Vocational Aptitude Battery (ASVAB). As an illustration,

I use the arithmetic reasoning subcomponent of the Armed Forces Qualifying Test (AFQT),

a test which consists of the verbal and math components of the ASVAB. The arithmetic

reasoning component of the ASVAB consists of 30 questions. Item-level responses, coded

as correct or incorrect, have recently been made publicly available. See Schofield (2014) for

an early analysis of the item-level data. I use the same subsample used in Hansen et al.

(2004), which consists of 1, 927 white non-Hispanic males. Hansen et al. (2004) find that

each additional year of education increases composite AFQT scores by 2− 4%.

I study the effect of education on the test score by analyzing each item separately. Let Xi

denote a binary indicator of schooling level and let M̃i denote the full vector of 30 items from

the arithmetic reasoning component of the ASVAB. For each item s, I apply the previous

analysis in the paper with Yi = M̃is and Mi = M̃i,−s = (M̃i1, . . . , M̃i,s−1, M̃i,s+1, . . . , M̃i,30).

So that the model is consistent as s varies, I assume throughout the analysis that M̃ij =

1(hj(Xi, θi) ≥ ε̃ij) and ε̃ij ⊥⊥ (Xi, θi) for each j = 1, . . . , 30. Then the CASF for each item

s is given by Gs(x, t) = Fε̃s(hs(x, t)) = ps(x, t).
9

The method described in Section 2 involves first using the individual items, Mi, to es-

timate θ̂i for each individual and then estimating Gs(x, t) by a nonparametric regression of

the outcome Yi on θ̂i and Xi. I use this method to compute estimates, Ĝs(x, t), for each

1 ≤ s ≤ 30 except s = j0. In computing Ĝs(x, t), I include the 28 items excluding item

s and item j0 in J J
m, which means that the estimates of θi actually differ for each s.10 To

estimate the schooling effect on each item, I estimate a conditional average treatment effect

9Imposing the assumption that ε̃ij ⊥⊥ (Xi, θi) for all j does not aid in identification of Gs because it does
not restrict the item response function pj(x, t) or the conditional dependence among the items given (Xi, θi).

10The theoretical analysis in the paper requires that the outcome variable, Yi, is not included in construct-
ing the mean response M̄i. However, results using a single set of estimates θ̂i based on all 29 items excluding
j0 do not differ substantially from the reported results.
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as ĈATEs(t) = Ĝs(1, t)− Ĝs(0, t) for each s 6= j0. By assumption pj0(1, t) = pj0(0, t) for all

t. Therefore,

ĈATE(t) =
1

J

∑
s 6=j0

ĈATEs(t)

provides an estimate of the conditional average causal effect of schooling on the test score.11

Figures 1 and 2 show Ĝs(0, t) and Ĝs(1, t) for a selection of the test items, along with 90%

confidence bands computed via 200 bootstrap samples.12 For these results I use j0 = 4.13

Each of these items shows a clear effect of schooling on the probability of correctly answering

the question. There is heterogeneity in this effect across items, however. For example, for

the three items in Figure 1, there is a statistically significant effect at all ability levels. For

the items in Figure 2, there is a large and significant effect only for individuals above the

median ability level. Figure 3 plots ĈATE(t). Here we see that the aggregate effect of

schooling on the test score is increasing in ability and is statistically significant at all ability

levels.

Since θi ∼ Uniform(0, 1), I can also estimate item-level average treatment effects as

ÂTEs =
∑H

h=1 ĈATEs(th) and the average treatment effect on the test score as ÂTE =∑H
h=1 ĈATE(th), where {th}Hh=1 is an equidistant grid of 20 points. Table 2 reports estimates

of these average treatment effects. As in Hansen et al. (2004), I find that there is a substantial

education effect on test scores. There is a statistically significant average effect for all but

four of the 29 items (excluding item 4). Having a high school education (or more) at the

time of the test increases the test score by between 4.6 and 10 percentage points, on average.

This effect is roughly 7− 15% of the average total score of 0.659. This is consistent with the

findings of Hansen et al. (2004), though the effects found here are larger, potentially because

I do not control for demographics and family background beyond restricting the sample to

white males.

11“Test score” refers to the simple average, 1
J

∑30
s=1 M̃is. The estimator can be easily modified if the test

score is a weighted average of the individual items.
12The validity of the bootstrap-based confidence intervals for kernel regression estimators has been estab-

lished by Hall (1992), among others. These standard results do not apply immediately here because (a) the
estimation procedure involves the use of a regressor generated in a first step and (b) the estimator is consis-
tent only if J →∞ along with n. While formally establishing the validity of the bootstrap-based confidence
intervals for the estimator Ĝs(x, t) is beyond the scope of this paper, others have addressed these two issues
separately. See Kapetanios (2008) regarding the validity of the (cross sectional) bootstrap in large n, large
T panel data models and see Mammen et al. (2016) for a result regarding the validity of the bootstrap for
semiparametric estimators involving a generated regressor.

13See online appendix D where I describe a data-driven approach to this choice.
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4 Extensions of the model

The model of Section 2 can be extended in several ways. In this section I discuss two types

of extensions. First, I introduce an alternative normalization that can be used to identify

and estimation the model instead of normalizing θ to be Uniform(0, 1). Second I discuss

alternatives to the exclusion restriction in Assumption 2.4. Williams (2013) considers some

additional extensions of the model.

4.1 Alternative normalizations

Suppose the distribution of θ is not normalized, as imposed by Assumption 2.3 and instead

assume that, for some x0 ∈ X and some j1 ∈ {1, . . . , J + 1}, pj1(x0, t) = π(t) where π is a

known function. Recall from the discussion following the statement of Theorem 2.1 that for

large J ,

E(Y | M̄ ≈ m,X = x) ≈ G(x, p̄−1(m;x)) (4.1)

and

Pr(Mj0 = 1 | M̄ ≈ m,X = x) ≈ pj0(p̄−1(m;x)). (4.2)

Likewise, under this alternative normalization,

Pr(Mj1 = 1 | M̄ ≈ m,X = x) ≈ π(x0, p̄
−1(m;x0)). (4.3)

Since π is known this implies that p̄−1(m;x0) is approximately identified for large J . Then,

applying (4.2) for x = x0, pj0(t) is identified as well. Applying (4.2) again for any other

value of x produces p̄−1(m;x). And applying (4.1), G(x, t) can then be obtained. While this

is merely a heuristic argument the result can be proved formally under sufficient regularity

conditions just as the discussion following the statement of Theorem 2.1 was formalized in

the proof of the theorem.

Suppose θ represents ability and each Mj is an item on a test. This shows how one

item on the test can be used to set the scale of latent ability θ. Then the distribution of

θ can be identified and estimated rather than normalized, and, if the item satisfying the

normalization is chosen carefully, then this can provide a more easily interpretable model.

Alternatively, Mj1 might represent a binary outcome rather than an item on the test, or a

similar restriction on the function g, rather than on pj1 , could be used to set the scale of θ. In

a model of the technology of skill formation, Cunha et al. (2010) emphasize the importance

17



of anchoring test scores in an interpretable metric in this way.

4.2 Alternative restrictions

Next I consider two restrictions that can be used in place of Assumption 2.4.

4.2.1 Conditional independence in the measurement

Suppose that X1 is a subvector of X such that pj0 varies only with X1 and θ ⊥⊥ X1 | X−1

where X−1 denotes the components of the vector X excluding the components of X1.

Under this restriction,

Pr(Mj0 = 1 | M̄ ≈ m,X = x) ≈ pj0(x1, p̄
−1(m;x)) (4.4)

and pj0(X1, p̄
−1(M̄ ;X)) ≈ pj0(X1, θ). Then

Pr(pj0(X1, p̄
−1(M̄ ;X)) ≤ π | X = x) ≈ Pr(pj0(X1, θ) ≤ π | X = x) (4.5)

= Fθ|X−1(p−1
j0

(π;x1) | x−1).

Then, since θ ∼ Uniform(0, 1), averaging this over the distribution of X−1 produces

p−1
j0

(π;x1). This implies that p̄−1(m;x) is identified and hence the CASF is identified.

Hansen et al. (2004) use this type of normalization to estimate the effect of education on

performance on a standardized test. This was extended to a model of the effect of education

on economic and social outcomes as an adult (Y ) by Heckman et al. (2006a). In these

models, the score on a standardized test depends on the individual’s education level at the

time the test was taken (X1). However, the individual’s ability (θ) is also correlated with X1

because X1 is dependent on the individual’s final level of education, X2, which is influenced

by ability. So, for example, an individual with X1 = 12 must have X2 ≥ 12 and therefore

will have a higher θ on average than someone with X1 = 10. If the problem of retention is

ignored, conditional on X2, X1 is a deterministic function of the student’s age at the time

of the test. Because the age at which the test was administered is exogenous, θ ⊥⊥ X1 | X2,

and the identification strategy just described can be applied if X contains both X1 and X2.

4.2.2 Linking exclusion restrictions

According to Assumption 2.4 one item, Mj0 , must be independent of X conditional on θ. In

some cases however, each item may be dependent on some components of X conditional on
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θ. In this case it is sufficient that, for each of the K components of X, there is one item

which is independent of that component conditional on θ.

Here I provide a sketch of the argument for X = (X1, X2). Suppose that X2 is excluded

from pj1 and X1 is excluded from pj2 . First,

Pr(Mj1 = 1 | M̄ ≈ m,X = x) ≈ pj1(x1, p̄
−1(m;x)) (4.6)

and

Pr(Mj2 = 1 | M̄ ≈ m,X = x) ≈ pj2(x2, p̄
−1(m;x)). (4.7)

From the right hand side of these two equations one can obtain pj1(x1, p
−1
j2

(π;x2)). Further-

more,

Pr(pj1(X1, p̄
−1(M̄ ;X)) ≤ π | X = x) ≈ Fθ|X(p−1

j1
(π;x1) | x).

Averaging this over the distribution of X2 | X1 = x1 produces Fθ|X(p−1
j1

(π;x1) | x1). Then,

plugging in pj1(x1, p
−1
j2

(π;x2)) and averaging over the marginal distribution of X1,∫
Fθ|X(p−1

j2
(π;x2) | x1)dFX1(x1) = p−1

j2
(π;x2)

since θ ∼ Uniform(0, 1). With p−1
j2

(π;x2) identified, p̄−1(m;x) and the rest of the model

can be determined.

This argument can be extended to the case where every component of X is excluded from

the equation for at least one item. Suppose, for example, that θ represents a risk aversion

parameter and the items M1, . . . ,MJ represent participation in different risky behaviors in a

population of young adults. In estimating a causal effect of education on risky behaviors it is

important to control for this latent risk aversion parameter, in addition to parents’ income.

The strategy discussed in this section can be used to identify such a model if at least one

of the risky behaviors is not affected by education (perhaps because the risks involved are

readily apparent) and at least one of the risky behaviors is not affected by parents’ income

(perhaps because there is no monetary cost of participation). The exclusion restriction is

much weaker than the exclusions required by Carneiro et al. (2003).

5 The identified set when J is small

In this section, I show that, even with a small number of proxies, this model has identi-

fying power under the conditional independence of Assumption 2.5. I maintain equations
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(2.1) and (2.2) and Assumptions 2.1-2.5 but I modify Assumptions 2.6 and 2.7.

Assumption 2.1 and 2.5 are sufficient to derive moment conditions that can be used to

define the identified set for G. This is formalized in the following theorem, which is proved

in Appendix A.

Theorem 5.1. Under Assumption 2.1 the CASF is given by G(x, t) = E(Y | X = x, θ = t)

and under Assumption 2.5, for any J ⊆ {1, . . . , J + 1} and any c ∈ {0, 1},

E(Y c
∏
j∈J

Mj | X = x) =

∫
G(x, t)cpJ (x, t)dFθ|X(t | x) (5.1)

where pJ :=
∏

j∈J pj.

The identified set for the CASF is then the set of functions G that are consistent with

these 2J+1 − 1 moment conditions. See supplementary appendix D for a careful definition

and a description of how this set can be approximated.14 In these examples I focus on

identification of two scalar objects – the CATE at a fixed t, i.e., G(x′, t) − G(x, t), and the

ATE, i.e.,
∫ 1

0
(G(x′, t)−G(x, t)) dt. For the former, if not also for the latter, it is clear that

some sort of shape restriction is essential.15 Therefore, I consider models that are monotonic

in the latent variable. A separate monotonicity assumption is used in the large J analysis

(see Assumptions 2.6 and 2.9 above). Here I assume the following.

Assumption 5.1. For each x ∈ X , each of the functions G(x, ·), p1(x, ·), . . . , pJ+1(x, ·) is

weakly increasing on the support of θ | X = x.

If it is known a priori that some of the proxies are positively related to the latent variable

while others are negatively related then the latter can be redefined so that the assumption

is still satisfied as stated. However, this assumption does rule out the scenario where the

correct orientation is neither known a priori nor prescribed by an economic model. While it

is possible that, given only an assumption of monotonicity in unknown direction, the correct

orientation is identified in the model, I do not pursue this here.

Assumption 5.1 is still not sufficient for bounds to be nontrivial in all cases because it

allows for the extreme case where each pj(x, ·) is a constant function. Indeed, in this case it

14I use an approximation method that extends methods implemented in Honore and Tamer (2006) and
Chernozhukov et al. (2013) for a semiparametric panel data model.

15Consider the following example. For each j let pj(x, t) = 1
2

∑d
k=0 ajk(x)ψk(t) + 1

2 where {ψk(·)}∞k=0

are the shifted Legendre polynomials defined on [0, 1] and 0 ≤ maxx∈X
∑d

k=0 ajk(x) < 1. In addition

suppose that G(x, t) =
∑d

k=0 a
C
k (x)ψk(t). Since pJ (x, t) can then be written as a linear combination of

the first Jd shifted Legendre polynomials, an observationally equivalent model can be defined by taking
G∗(x, t) := G(x, t) + λ(x)ej(t) where ej(t) = ψk∗(t) for any k > Jd. But |G(x, t)−G∗(x, t)| ≥ |λ(x)|. This
works because of the orthogonality of the Legendre polynomials, which requires nonmonotonicity.
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can be shown that the identified set is the trivial set. However, computation of the bounds is

not tractable if we instead require the functions to be strictly increasing because this would

entail optimization over a non-compact parameter space.

I now illustrate features of the identified set by way of several examples. The details of

the computations presented here are also contained in supplementary appendix D. In each

case, I calculate the population moments according to the following data generating process.

X = 1(sθ ≥ V ),

Y = 1(βX + µY + αY Φ−1(θ) +
√

1− α2
YU ≥ 0), and (5.2)

Mj = 1(βjX + µj + αjΦ
−1(θ) +

√
1− α2

jεj ≥ 0), j = 1, . . . , J

where V, U, ε1, . . . , εJ are mutually independent, V ∼ Uniform(0, 1) and U, ε1, . . . , εJ are

each drawn from the standard normal distribution.

Figures 4 and 5 show bounds on the ATE,
∫ 1

0
(G(1, t)−G(0, t)) dt.16 For each example,

I compute the trivial bounds, the bounds based on observing (Y,M1, X) and bounds based

on (Y,M1,M2, X). Several features of the identified set that are common to these examples

are apparent. First, the bounds are generally nontrivial even when only one binary proxy is

observed. Second, if a second binary proxy is observed, the bounds typically become more

narrow. The relative benefit of this second proxy depends on the model though. Third, when

two binary proxies are observed, the bounds tend to be the most narrow when αY = 0.01.17

5.1 An empirical example

Dee (2004) provides evidence that college attendance substantially increases civic-related

behavior. OLS estimates using data from the High School and Beyond (HSB) longitudinal

study indicate that attending college by the age of 20 increases the probability of being

registered to vote at age 28 by roughly 12 percentage points, for example. Dee (2004) also

provides instrumental variables estimates that suggest a larger effect, an increase of roughly

22 percentage points. Identification is based on variation in college availability, which is

assumed to be exogenous.

The instrumental variable analysis in Dee (2004) is motivated in part by the observation

16Rather than imposing the common support condition (Assumption 2.2), I instead impose that G(x, t)
is bounded between 0 and 1 to obtain nontrivial bounds on the ASF. The boundedness condition translates
to a bound on the size of the effect outside of the common support. Neither condition is needed to obtain
nontrivial bounds on G(x, t) for t ∈ Θ(x).

17In this case, Y is nearly independent of Mj conditional on X and, hence, it can be inferred that Y varies
little, if at all, with θ. From this it can further be inferred that dependence between Y and X must be
largely due to the structural relationship.
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that regressions using civic-related behaviors that preceded the college attendance decision

as the dependent variable produce positive and significant college attendance effects. This

is what we would expect if civic-related behaviors are driven by a latent “civic-mindedness”

trait that is formed in high school. If there is heterogeneity in the civic returns to education

then the IV estimates in Dee (2004) are estimates of the effect for those who would be

induced to attend college by a reduction in the distance to nearby colleges as IV estimates

are a weighted average of marginal treatment effects (Heckman et al., 2006b).

I analyze similar data from the same High School and Beyond (HSB) longitudinal study.

The data consists of a sample of high school sophomores in 1980. Individuals in this sample

who reported having attended college by 1984 (when the majority were 20 years old) were

23 percentage points more likely to have voted in an election between March of 1984 and

February of 1986 than those who did not report having attended college. I consider the

nonseparable model of equation (2.1),

V otedi = g(SomeCollegei, θi, Ui) (5.3)

where θi is the individual’s latent “civic-mindedness”. In addition I use data from the HSB

on other civic-related behaviors. Specifically I find three proxies that are appropriate to

measure θi. The first proxy (Mi1) is whether the individual answered that correcting social

and economic inequalities was very important, as opposed to somewhat or not important, in

the baseline survey in 1980. The second proxy (Mi2) indicates whether the individual partic-

ipated in service organizations, political clubs, neighborhood groups, or other volunteer work

in the 1986 follow-up. The third proxy (Mi3) indicates whether the individual reported at

least sometimes discussing public problems in the country or their own community with oth-

ers in the 1986 follow-up. Identification relies on the exclusion restriction (Assumption 2.4)

which requires that college attendance does not enter the equation for the first proxy. This

assumption is satisfied because Mi1 was measured when the entire sample was still enrolled

in high school.

I consider three models that use the first proxy only, the first two proxies only, and all

three proxies. For comparison, the first column in Table 3 reports the results of a regression

of V otedi on SomeCollegei that also controls for each of these sets of the three proxies.

Controlling for these measures of civic behaviors and attitudes reduces the coefficient slightly,

from 0.23 to 0.2. The second column reports estimated bounds on the ATE. I estimate the

bounds using the method describe in supplementary appendix D.

Overall, while the bounds narrow as more proxies are included in the model, the bounds

are quite wide. The bounds on the ATE do not exclude 0 in any of the three models and the
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width of the bounds narrows from 0.9 to 0.27. The OLS estimates are at the upper end of

the identified set for models 2 and 3. Figure 6 shows pointwise bounds on the CATE. These

bounds are not informative for model 1 and narrow only slightly for model 2. The bounds

for the CATE in model 3 are substantially more narrow. The lower bound for the CATE at

points above 0.5 is near 0.

6 Conclusion

This paper introduces new results that demonstrate how binary proxies can be used to

obtain identification in a nonseparable model with endogeneity. It provides an approach

that assumes neither exogeneity conditional on a vector of observed covariates nor requires

an instrument that is excluded from the outcome equation. Nor does this approach require

any covariates with large support. The model has identifying power, in the sense that the

identified set is nontrivial, with even a few binary proxies. However, the empirical results in

Section 5.1 suggest that the identifying power in the model can be weak. This suggests that,

in these cases, identification in the standard parametric models is primarily imposed by the

parametric structure. The more positive result coming from this paper is that the model is

identified in the limit so that it can be estimated consistently with a large number of proxies.

The paper also shows how the model can be nonparametrically estimated as n, J →∞.

These results also suggest an alternative use of high-dimensional data in the context

of an economic model with heterogeneity to current work (see Belloni et al., 2013, for a

different approach). In a setting where big data can be quickly and inexpensively generated,

the identification conditions provide a roadmap for how to produce data that will facilitate

identification.
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Appendix

A Identification Proofs

This appendix contains proofs of the main identification results. A separate supplementary

appendix provides the remaining proofs and results on computation of the identified set.

A.1 Preliminary results

Lemma A.1. Under Assumption 2.5, for any ε > 0,

Pr
(
|M̄ − p̄(X, θ)| > ε

)
≤ 2 exp

(
−2Jε2

)
.

Proof. First,

Pr(|M̄ − p̄(x, θ)| > ε | X = x, θ = t)

= Pr(|M̄ − E(M̄ | X = x, θ = t)| > ε | X = x, θ = t) (A.1)

≤ 2 exp
(
−2Jε2

)
where the equality follows from the definition of p̄ and the inequality follows from Hoeffd-

ing’s inequality since M̄ = J−1
∑

j 6=j0 Mij where the Mij are independent random variables

conditional on (X, θ) (by Assumption 2.5) and are bounded between 0 and 1.

Second, by the law of iterated expectations

Pr
(
|M̄ − p̄(X, θ)| > ε

)
= E

(
Pr(|M̄ − p̄(x, θ)| > ε | X, θ)

)
≤ E

(
2 exp

(
−2Jε2

))
(A.2)

= 2 exp
(
−2Jε2

)
.

The proof of the following lemma is provided in the supplementary appendix.

Lemma A.2. Suppose that A and B are two random variables such that Pr(|A−B| > x) ≤
y. Suppose the distribution function for B is Lipschitz continuous with Lipschitz constant

f̄B (i.e., |Pr(B ≤ x′)−Pr(B ≤ x)| ≤ f̄B|x′− x|). Then for any z, z′ such that |z′− z| ≤ w,

|Pr(A ≤ z)− Pr(B ≤ z′)| ≤ y + (x+ w)f̄B.
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A.2 Proof of Theorem 2.1

When considering two models γ0, γ ∈ ΓJ I will use notation pj,0, p̄0, F 0
θ|X , Θ0(x), etc. to

denote the elements of the model corresponding to γ0 and pj, p̄, Fθ|X , Θ(x), etc. to denote

the parameters of the model corresponding to γ.

The proof which follows makes use of three lemmas which are stated subsequently.

Proof of Theorem 2.1 Under Assumption 2.1, the CASF is given by

G(x, t) := E(Y | X = x, θ = t)

=

∫
g(x, t, u)dFU |X,θ(u | x, t) (A.3)

=

∫
g(x, t, u)dFU(u).

Given this mapping from the model parameter γ to the object G and given an arbitrary

γ0 ∈ ΓJ , the identified set IJ(γ0;G(·)) is defined by equation (2.4). Let G ∈ IJ(γ0;G(·)).
Then there exists γ ∈ ΓJ such that PJ(γ) = PJ(γ0) and G(x, t) =

∫
g(x, t, u)dFU(u) and

G0(x, t) =
∫
g0(x, t, u)dF 0

U(u).

Fix x ∈ X and t0 ∈ Θ0(x) and define m0 := p̄0(x, t0). First, by Lemma A.3, if J ≥

J0(c, C) then ∃t ∈ Θ(x) such that |m0 − p̄(x, t)| ≤ rJ/2 where rJ = 4
(
log(J)
J

)1/2

. Then for

J ≥ J0(c, C),

|G0(x, t0)−G(x, t0)| ≤ |G0(x, t0)− E(Y | |M̄ −m0| ≤ rJ , X = x)| (A.4)

+ |G(x, t)− E(Y | |M̄ −m0| ≤ rJ , X = x)|+ |G(x, t0)−G(x, t)|

≤ |G0(x, t0)− E(Y | |M̄ −m0| ≤ rJ , X = x)|

+ |G(x, t)− E(Y | |M̄ −m0| ≤ rJ , X = x)|+ C|t0 − t|

where the first inequality follows from the triangle inequality and the second follows from

Assumption 2.7.
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Therefore, for J ≥ J0(c, C),

sup
γ0∈ΓJ ,G∈IJ (γ0;G(·))

||G0 −G|| (A.5)

≤ 2 sup
P0
J

sup
γ:PJ (γ)=P0

J

sup
x∈X ,t∈Θ(x)

m0∈[0,1]:|m0−p̄(x,t)|≤rJ/2

∣∣G(x, t)− E(Y | |M̄ −m0| ≤ rJ , X = x)
∣∣

+ sup
γ0,γ∈ΓJ :PJ (γ)=PJ (γ0)

sup
x∈X ,t0∈Θ0(x)

t∈Θ(x):|p̄0(x,t0)−p̄(x,t)|≤rJ/2

|t− t0|

= O(rJ)

where the second line follows because |m0− p̄0(x, t0)| = 0 ≤ rJ/2, |m0− p̄(x, t)| ≤ rJ/2, and

|p̄0(x, t0)− p̄(x, t)| ≤ |m0 − p̄0(x, t0)|+ |m0 − p̄(x, t)| ≤ rJ/2 and the third line follows from

Lemma A.4 and Lemma A.5.

And, therefore, limJ→∞ supγ0∈ΓJ ,G∈IJ (γ0;G(·)) ||G0 −G|| = 0, as desired.

Lemma A.3. Suppose PJ(γ) = PJ(γ0) for γ0, γ ∈ ΓJ for each J ≥ 1. Then, under the

assumptions of Theorem 2.1, there exists J0(c, C) such that, for all x ∈ X and t0 ∈ Θ0(x)

and all J ≥ J0(c, C), ∃t ∈ Θ(x) such that

|p̄0(x, t0)− p̄(x, t)| ≤ 2

(
log(J)

J

)1/2

.

Lemma A.4. Under the assumptions of Theorem 2.1, for rJ = 4 (log(J)/J)1/2,

sup
P0
J

sup
γ:PJ (γ)=P0

J

sup
x∈X ,t∈Θ(x)

m0∈[0,1]:|m0−p̄(x,t)|≤rJ/2

∣∣G(x, t)− E(Y | |M̄ −m0| ≤ rJ , X = x)
∣∣ = O(rJ).

Lemma A.5. Under the assumptions of Theorem 2.1, for rJ = 4 (log(J)/J)1/2,

sup
γ0,γ∈ΓJ :PJ (γ)=PJ (γ0)

sup
x∈X ,t0∈Θ0(x)

t∈Θ(x):|p̄0(x,t0)−p̄(x,t)|≤rJ/2

|t− t0| = O(rJ).

A.3 Proof of Lemmas A.4-A.6

Proof of Lemma A.3 Fix x ∈ X and t0 ∈ Θ0(x) and let aJ =
(
log(J)
J

)1/2

. I will first

show that

Pr(|M̄ − p̄0(x, t0)| ≤ aJ | X = x) ≥ caJ
C
− 2c−1 exp(−1

2
Ja2

J). (A.6)
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First, by iterating expectations and then restricting the range of θ,

Pr(|M̄ − p̄0(x, t0)| ≤ aJ | X = x) (A.7)

=

∫
Pr(|M̄ − p̄0(x, t0)| ≤ aJ | X = x, θ = τ)dF 0

θ|X=x(τ)

≥
∫
τ :|p̄0(x,τ)−p̄0(x,t0)|≤aJ/2

Pr(|M̄ − p̄0(x, t0)| ≤ aJ | X = x, θ = τ)dF 0
θ|X=x(τ)

=

∫
τ :|p̄0(x,τ)−p̄0(x,t0)|≤aJ/2

(
1− Pr(|M̄ − p̄0(x, t0)| > aJ | X = x, θ = τ)

)
dF 0

θ|X=x(τ)

≥
∫
τ :|p̄0(x,τ)−p̄0(x,t0)|≤aJ/2

(
1− Pr(|M̄ − p̄0(x, τ)| > aJ/2 | X = x, θ = τ)

)
dF 0

θ|X=x(τ)

where the last inequality follows because |M̄−p̄0(x, τ)| ≥ |M̄−p̄0(x, t0)|−|p̄0(x, τ)−p̄0(x, t0)|.
Next, applying the law of iterated expectations in reverse,∫

τ :|p̄0(x,τ)−p̄0(x,t0)|≤aJ/2

(
1− Pr(|M̄ − p̄0(x, τ)| > aJ/2 | X = x, θ = τ)

)
dF 0

θ|X=x(τ)

=

∫
τ :|p̄0(x,τ)−p̄0(x,t0)|≤aJ/2

dF 0
θ|X=x(τ) (A.8)

−
∫
τ :|p̄0(x,τ)−p̄0(x,t0)|≤aJ/2

Pr(|M̄ − p̄0(x, τ)| > aJ/2 | X = x, θ = τ)dF 0
θ|X=x(τ)

≥ Pr(|p̄0(x, θ)− p̄0(x, t0)| ≤ aJ/2 | X = x)− Pr(|M̄ − p̄0(x, θ)| > aJ/2 | X = x).

By Assumption 2.7,

Pr(|p̄0(x, θ)− p̄0(x, t0)| ≤ aJ/2 | X = x) ≥ F 0
θ|X=x(t0 +

aJ
2C

)− F 0
θ|X=x(t0 −

aJ
2C

)

≥ caJ
C
, (A.9)

and, applying Lemma A.1,

Pr(|M̄ − p̄0(x, θ)| > aJ/2 | X = x) ≤ Pr(|M̄ − p̄0(X, θ)| > aJ/2, X = x)

Pr(X = x)
(A.10)

≤ 2c−1 exp(−1

2
Ja2

J).

Inequality (A.6) follows from (A.7)-(A.10).

On the other hand, consider the model parameterized by γ ∈ ΓJ . If |M̄ − p̄0(x, t0)| ≤ aJ
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then for any τ either |p̄(x, τ)− p̄0(x, t0)| ≤ 2aJ or |M̄ − p̄(x, τ)| > aJ . Therefore,

Pr(|M̄ − p̄0(x, t0)| ≤ aJ | X = x) (A.11)

=

∫
Pr(|M̄ − p̄0(x, t0)| ≤ aJ | X = x, θ = τ)dFθ|X=x(τ)

≤
∫
Pr(|p̄(x, τ)− p̄0(x, t0)| ≤ 2aJ | X = x, θ = τ)dFθ|X=x(τ)

+

∫
Pr(|M̄ − p̄(x, τ)| > aJ | X = x, θ = τ)dFθ|X=x(τ)

= Pr(|p̄(x, θ)− p̄0(x, t0)| ≤ 2aJ | X = x) + Pr(|M̄ − p̄(x, θ)| > aJ | X = x).

Since γ must also satisfy Assumption 2.5,

Pr(|M̄ − p̄(x, θ)| > aJ | X = x) ≤ 2c−1 exp(−2Ja2
J). (A.12)

To prove the result by contradiction, suppose that |p̄(x, τ) − p̄0(x, t0)| > 2aJ for all

τ ∈ Θ(x). Then Pr(|p̄(x, θ) − p̄0(x, t0)| < 2aJ | X = x) = 0 and (A.6), (A.11), and (A.12)

together imply that

c

C
aJ − 2c−1 exp(−1

2
Ja2

J) ≤ Pr(|M̄ − p̄0(x, t0)| ≤ aJ | X = x) (A.13)

≤ 2c−1 exp(−2Ja2
J)

which implies that

c

C

(
log(J)

J

)1/2

≤ 2c−1J−2 + 2c−1J−1/2 (A.14)

which implies a contradiction for large enough J . I can conclude that for all sufficiently large

J , ∃t ∈ Θ(x) such that |p̄0(x, t0)− p̄(x, t)| ≤ 2aJ .

Proof of Lemma A.4 Consider any x ∈ X and t ∈ Θ(x) and let m0 be such that

|m0 − p̄(x, t)| ≤ rJ/2.

First, since PJ(γ) = P0
J and γ satisfies Assumptions 2.1 and 2.5, E(Y | |M̄ − m0| ≤
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rJ , X = x) =
∫
G(x, τ)dFθ||M̄−m0|≤rJ ,X=x(τ). Therefore,

|G(x, t)− E(Y | |M̄ −m0| ≤ rJ , X = x)|

=

∣∣∣∣∫ (G(x, t)−G(x, τ)) dFθ||M̄−m0|≤rJ ,X=x(τ)

∣∣∣∣
≤
∫
τ :|p̄(x,τ)−p̄(x,t)|≤3rJ

|G(x, τ)−G(x, t)|dFθ||M̄−m0|≤rJ ,X=x(τ) (A.15)

+

∫
τ :|p̄(x,τ)−p̄(x,t)|>3rJ

|G(x, τ)−G(x, t)|dFθ||M̄−m0|≤rJ ,X=x(τ)

≤ 3C

c
rJ +BPr(|p̄(x, θ)− p̄(x, t)| > 3rJ | |M̄ −m0| ≤ rJ , X = x).

The first term in the final line follows because |G(x, τ) − G(x, t)| ≤ C|τ − t| and because

|p̄(x, τ) − p̄(x, t)| ≥ c|τ − t|. The second term in the final line of (A.18) follows because

G(x, ·) is uniformly continuous on a compact subset of R for each x and |X | is finite and

therefore there is some positive constant B <∞ such that supx∈X ,t∈Θ(x) |G(x, t)| ≤ B/2.

Next, if |m0 − p̄(x, t)| ≤ rJ/2, |p̄(x, θ)− p̄(x, t)| > 3rJ , and |M̄ −m0| ≤ rJ then

|M̄ − p̄(x, θ)| ≥ |p̄(x, θ)− p̄(x, t)| − |M̄ −m0| − |m0 − p̄(x, t)| > rJ (A.16)

and therefore

Pr(|p̄(x, θ)− p̄(x, t)| > 3rJ | |M̄ −m0| ≤ rJ , X = x)

≤ Pr(|M̄ − p̄(x, θ)| > rJ | |M̄ −m0| ≤ rJ , X = x) (A.17)

Next,

Pr(|M̄ − p̄(x, θ)| > rJ | |M̄ −m0| ≤ rJ , X = x)

=
Pr(|M̄ − p̄(X, θ)| > rJ , |M̄ −m0| ≤ rJ , X = x)

Pr(|M̄ −m0| ≤ rJ , X = x)

≤ Pr(|M̄ − p̄(X, θ)| > rJ)

Pr(|M̄ −m0| ≤ rJ , X = x)
. (A.18)

Applying Lemma A.1, since γ must satisfy Assumption 2.5,

Pr(|M̄ − p̄(X, θ)| > rJ) ≤ 2 exp(−2Jr2
J) (A.19)
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Combining this with equations (A.15)-(A.18),

∣∣G(x, t)− E(Y | |M̄ −m0| ≤ rJ , X = x)
∣∣ (A.20)

≤ 2B exp(−2Jr2
J)

Pr(|M̄ −m0| ≤ rJ , X = x)
+

3C

c
rJ

The desired result follows because Pr(|M̄ − m0| ≤ rJ , X = x) = Pr(|M̄ − m0| ≤ rJ |
X = x)Pr(X = x), Pr(X = x) ≥ c, and

Pr(|M̄ −m0| ≤ rJ | X = x) ≥ crJ
2C
− 2c−1 exp(−1

8
Jr2

J). (A.21)

The proof is concluded by proving (A.21) since

2B exp(−2Jr2
J)

c2rJ
2C
− 2 exp(−1

8
Jr2

J)
=

2BJ−8

2c2

C
(log(J)/J)1/2 − 2J−2

= O(rJ). (A.22)

Since |m0 − p̄(x, t)| ≤ rJ/2, Pr(|M̄ − m0| ≤ rJ | X = x) ≥ Pr(|M̄ − p̄(x, t)| ≤ rJ/2 |
X = x). Following the arguments in lines (A.7) and (A.8) of the proof of Lemma A.3,

Pr(|M̄ − p̄(x, t)| ≤ rJ/2 | X = x) (A.23)

≥ Pr(p̄(x, θ)− p̄(x, t)| ≤ rJ/4 | X = x)− Pr(|M̄ − p̄(x, θ)| > rJ/4 | X = x).

By Assumption 2.7,

Pr(|p̄(x, θ)− p̄(x, t)| ≤ rJ/4 | X = x) (A.24)

≥ Fθ|X=x(p̄(x, t) +
rJ
4C

)− Fθ|X=x(p̄(x, t)−
rJ
4C

)

≥ crJ
2C

,

and, applying Lemma A.1,

Pr(|M̄ − p̄(x, θ)| > rJ/4 | X = x) ≤ 2c−1 exp(−1

8
Jr2

J). (A.25)

This proves inequality (A.21) and completes the proof.

Proof of Lemma A.5 For any x′ ∈ X and m′0 ∈ [0, 1], define T (m′0, x
′; rJ) := E(Mj0 |

|M̄−m′0| ≤ rJ , X = x′). I will show below that for any t′0 ∈ Θ0(x′), if |p̄0(x′, t′0)−m′0| < rJ/2
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then

|T (m′0, x
′; rJ)− pj0,0(t′0)| (A.26)

≤ δJ :=
2B exp(−2Jr2

J)
c2

2C
rJ − 2 exp(−1

8
Jr2

J)
+

3C

c
rJ .

This implies that

Pr(|T (M̄,X; rJ)− pj0,0(θ)| > δJ) ≤ Pr(|p̄0(X, θ)− M̄ | > rJ/2) (A.27)

≤ ρJ := 2 exp(−1

2
Jr2

J)

where the second line follows from Lemma A.1.

Since γ is observationally equivalent to γ0, the same argument shows that for any t′ ∈
Θ(x′), if |p̄(x′, t′)−m′0| ≤ rJ/2 then

|T (m′0, x
′; rJ)− pj0(t′)| ≤ δJ (A.28)

and hence

Pr(|T (M̄,X; rJ)− pj0(θ)| > δJ) ≤ Pr(|p̄(X, θ)− M̄ | > rJ/2) ≤ ρJ . (A.29)

It can also be concluded from (A.26) and (A.28) that for m0 = p̄0(x, t0), since, by assumption,

|m0 − p̄(x, t)| ≤ rJ/2,

|pj0,0(t0)− pj0(t)| ≤ |T (m0, x; rJ)− pj0,0(t0)|+ |T (m0, x; rJ)− pj0(t)| (A.30)

≤ 2δJ .

Then (A.27) implies that

|Pr(T (M̄,X; rJ) ≤ pj0,0(t0))− t0| ≤
δJ
c

+ ρJ (A.31)

by an application of Lemma A.2 with A = T (M̄,X; rJ), B = pj0,0(θ), and z = z′ = pj0,0(t0)

since Pr(pj0,0(θ) ≤ pj0,0(t0)) = t0 and the distribution function Pr(pj0,0(θ) ≤ z) is Lipschitz

continuous with fB̄ = 1/c.

Similarly, (A.29) and (A.30) imply that

|Pr(T (M̄,X; rJ) ≤ pj0,0(t0))− t| ≤ 3δJ
c

+ ρJ (A.32)
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by an application of Lemma A.2 with A = T (M̄,X; rJ), B = pj0(θ), z = pj0,0(t0) and

z′ = pj0(t).

Then (A.31) and (A.32) imply that |t− t0| ≤ 4δJ
c

+ 2ρJ . The desired result follows since,

plugging in rJ = 4
(
log(J)
J

)1/2

,

4δJ
c

+ 2ρJ =
4

c

(
2BJ−32

2c2

C
(log(J)/J)1/2 − 2J−2

+
3C

c
rJ

)
+ 4J−8 = O(rJ). (A.33)

It remains to show that (A.26) holds for any x′ ∈ X , any m′0 ∈ [0, 1] and any t′0 ∈ Θ0(x′)

for which |p̄0(x′, t′0) − m′0| < rJ/2. The proof of this is almost identical to the proof of

Lemma A.4 so I will provide only a sketch.

First, by Assumption 2.5, E(Mj0 | |M̄ − m′0| ≤ rJ , X = x′) = E(E(Mj0 | X, θ) |
|M̄ −m′0| ≤ rJ , X = x′). Therefore, since, by Assumption 2.4, E(Mj0 | X = x′, θ) = pj0,0(θ),

∣∣pj0,0(t′0)− E(Mj0 | |M̄ −m′0| ≤ rJ , X = x′)
∣∣

= |pj0,0(t′0)− E(E(Mj0 | X = x′, θ) | |M̄ −m′0| ≤ rJ , X = x′)|

≤
∣∣∣∣∫ (pj0,0(t′0)− pj0,0(τ)) dF 0

θ||M̄−m′0|≤rJ ,X=x′(τ)

∣∣∣∣
≤ 3C

c
rJ +BPr(|p̄0(x′, θ)− p̄0(x′, t′0)| > 3rJ | |M̄ −m′0| ≤ rJ , X = x′) (A.34)

≤ 3C

c
rJ +BPr(|M̄ − p̄0(x′, θ)| > rJ | |M̄ −m′0| ≤ rJ , X = x′)

≤ 3C

c
rJ +

2B exp(−2Jr2
J)

c2

2C
rJ − 2 exp(−1

8
Jr2

J)

where the third inequality follows because |p̄0(x′, t′0)−m′0| < rJ/2.

A.4 Theorem 2.3

This section provides the proof of Theorem 2.3. First, the parameter spaces ΓJ so that the

continuity conditions of Assumption 2.10 hold uniformly within this space. This is analagous

to the requirement in Theorem 2.1 that the all parameters in the space satisfy Assumption

2.10 with the same Lipschitz constants.

Uniform equicontinuity and modulus of continuity For each J , let ΓJ denote the

parameter space. It is assumed that ΓJ is defined so that Assumptions 2.1, 2.3-2.4, and 2.8-

2.10 are each satisfied for each J . To state the additional regularity condition precisely, for
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any J and any γJ ∈ ΓJ I will use the notation GγJ (x, t) to emphasize that this is the G(x, t)

associated with the parameter γJ , p̄γJ (x, t) to emphasize that this is the p̄(x, t) associated

with the parameter γJ , etc. After stating this assumption this will be left implicit in the

notation in the rest of the paper.

Assumption A.1. The sequence of parameter spaces {ΓJ : J ≥ 1} are defined so that each

of the following classes of functions is uniformly equicontinuous.

(i) {GγJ (x, ·) : [0, 1]→ R;x ∈ X , γJ ∈ ΓJ , J ≥ 1}

(ii) {p̄γJ (x, ·) : [0, 1]→ [0, 1];x ∈ X , γJ ∈ ΓJ , J ≥ 1}

(iii) {p̄−1
γJ

(·;x) : [0, 1]→ [0, 1];x ∈ X , γJ ∈ ΓJ , J ≥ 1}

(iv) {pj0,γJ (·) : [0, 1]→ [0, 1]; γJ ∈ ΓJ , J ≥ 1}

(v) {p−1
j0,γJ

(·) : [0, 1]→ [0, 1]; γJ ∈ ΓJ , J ≥ 1}

(vi) {Qθ|X;γJ (· | x) : [0, 1]→ [0, 1];x ∈ X , γJ ∈ ΓJ , J ≥ 1}

This means, for example, that for all ε > 0 there exists δ > 0 such that for all J , all

γJ ∈ ΓJ , all x ∈ X and any pair t, t′ ∈ [0, 1], if |t′ − t| < δ then |p̄(x, t′) − p̄(x, t)| < ε.

In the proof of Theorem 2.3, I make use of a convenient equivalent definition of uniform

equicontinuity. Uniform equicontinuity of a class of functions, H, on a space Z, is equivalent

to the existence of a real-valued function, cH, satisfying lims→0 cH(s) = cH(0) = 0, such that

for every h ∈ H and every z, z′ ∈ Z, |h(z′)− h(z)| ≤ cH(|z′ − z|). The function cH is called

the modulus of continuity of the space H. Furthermore, cH can be chosen to be continuous

and monotonically increasing.

With a slight abuse of notation, let cG denote the modulus of continuity of the space

{GγJ (x, ·) : [0, 1] → R;x ∈ X , γJ ∈ ΓJ , J ≥ 1}, which exists by Assumption A.1. Likewise,

let cp̄, cp̄−1 , cpj0 , cp−1
j0

, and cQ denote the moduli of continuity of the spaces defined in (ii)-(vi)

in the statement of Assumption A.1.

Some preliminary details A proof of the following lemma is provided in the supplemen-

tary appendix.

Lemma A.6. Let {αk} be a decreasing sequence of positive real numbers such that limk→∞ αk =

0. For any constant A > 0, there exist sequences {kN : N ≥ 1} and {rN : N ≥ 1} such that

rN → 0,

αbkN c

rNc
−1
Q (c−1

p̄ (rN))
→ 0,
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αbκNc/c
−1
Q (c−1

p̄ (rN))→ 0 for any constant κ > 0, and

kN

c−1
Q (c−1

p̄ (rN))
exp

(
−ANr

2
N

k2
N

)
→ 0.

Now, let NJ := |J J
m(η)| where η > 0 and J J

m(η) are defined in Assumption 2.9. Then

define

M̄ :=
1

NJ

∑
j∈J J

m(η)

Mj =

∑J
j=1wj,JMj∑J
j=1wj,J

(A.35)

where wj,J = 1(j ∈ J J
m(η)). Let k̃J = bηJc. Also, note that it is assumed that N−1

J = O(J−1)

so that bJ ≤ NJ ≤ J for some constant b > 0, at least for all sufficiently large J .

Proof of Theorem 2.3 Under Assumption 2.1, the CASF is given by

G(x, t) := E(Y | X = x, θ = t) (A.36)

=

∫
g(x, t, u)dFU(u).

Given this mapping from the model parameter γ to the object G and given an arbitrary

γ0 ∈ ΓJ , the identified set IJ(γ0;G(·)) is defined by equation (2.4). Let G ∈ IJ(γ0;G(·)).
Then there exists γ ∈ ΓJ such that PJ(γ) = PJ(γ0) and G(x, t) =

∫
g(x, t, u)dFU(u) and

G0(x, t) =
∫
g0(x, t, u)dF 0

U(u). It is sufficient to find a sequence aJ such that aJ → 0 and

|G0(x, t0)−G(x, t0)| ≤ aJ for all x ∈ X and t0 ∈ Θ0(x), where aJ does not depend on γ0 or

γ.

Fix x ∈ X and t0 ∈ Θ0(x) and define m0 := p̄0(x, t0). The first step is to find t ∈ Θ(x)

such that m0 is also close to p̄(x, t). By Lemma A.6, for any A > 0, I can define rJ := rNJ

and kJ := kNJ
where {rN : N ≥ 1} and {kN : N ≥ 1} are such that rN → 0, kN = o(N),

αbkN c

rNc
−1
Q (c−1

p̄ (rN/4))
→ 0, (A.37)

αbκNc/c
−1
Q (c−1

p̄ (rN/4))→ 0 for any constant κ > 0, and

kN

c−1
Q (c−1

p̄ (rN/4))
exp

(
−ANr

2
N

k2
N

)
→ 0. (A.38)

Since NJ →∞ as J →∞, the sequences rJ and kJ satisfy conditions (i)-(iii) of Lemma A.7

with a = 1/2 if A is sufficiently small. Therefore, ∃t ∈ Θ(x) such that |m0− p̄(x, t)| ≤ rJ/2.

38



Next, let G̃(m0, x; rJ) := E(Y | |M̄ −m0| ≤ rJ , X = x). Then

|G0(x, t0)−G(x, t0)| (A.39)

≤ |G̃(m0, x; rJ)−G0(x, t0)|+ |G̃(m0, x; rJ)−G(x, t)|+ |G(x, t0)−G(x, t)|

≤ |G̃(m0, x; rJ)−G0(x, t0)|+ |G̃(m0, x; rJ)−G(x, t)|+ cG(|t− t0|)

by the triangle inequality and Assumption A.1. Since |m0 − p̄0(x, t0)| = 0 ≤ rJ/2 and

|m0 − p̄(x, t)| ≤ rJ/2, and because t0 ∈ Θ0(x) and t ∈ Θ(x), Lemma A.8 implies that the

first two terms on the last line of (A.39) are both bounded by

δ1J := b11
ρAJ + ρBJ + ρCJ

1− b13(ρAJ + ρBJ)
+ ρDJ ,

where

ρAJ :=
αkJ

rJc
−1
Q (c−1

p̄ (rJ/2))
, ρBJ :=

kJ

c−1
Q (c−1

p̄ (rJ/2))
exp

(
−ANJr

2
J

k2
J

)
, (A.40)

ρCJ :=
αk̃J

c−1
Q (c−1

p̄ (rJ/2))
, and ρDJ := cG(cp̄−1(3rJ)),

if A is sufficiently small. Since |p̄0(x, t0)− p̄(x, t)| ≤ |m0 − p̄0(x, t0)|+ |m0 − p̄(x, t)| ≤ rJ/2,

Lemma A.9 implies that |t− t0| ≤ b22cp−1
j0

(δ2J) + b21c
−1
Q (c−1

p̄ (rJ))(ρAJ + ρBJ) where

δ2J := b23
ρAJ + ρBJ + ρCJ

1− b26(ρAJ + ρBJ)
+ ρDJ

(again, provided that the constant A is chosen small enough). Therefore,

|G0(x, t0)−G(x, t0)| (A.41)

≤ aJ := 2δ1J + cG

(
b22cp−1

j0

(δ2J) + b21c
−1
Q (c−1

p̄ (rJ))(ρAJ + ρBJ)
)
.

Now, ρAJ ≤
αkJ

rJc
−1
Q (c−1

p̄ (rJ/4))
→ 0 and ρBJ ≤ kJ

c−1
Q (c−1

p̄ (rJ/4))
exp

(
−ANJr

2
J

k2
J

)
→ 0. Moreover,

since NJ ≤ J , k̃J = bηJc ≥ bηNJc. Then, since the sequence of mixing coefficients, {αk} is

decreasing,

ρCJ ≤
αbηNJc

c−1
Q (c−1

p̄ (rNJ
/2))

≤
αbηNJc

c−1
Q (c−1

p̄ (rNJ
/4))

→ 0. (A.42)

Lastly, rJ → 0, so ρDJ → 0. Hence δ1J → 0 and δ2J → 0 and, therefore, aJ → 0, which is

the desired result.
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The following lemmas are analogous to Lemmas A.3-A.5 used to prove Theorem 2.1.

Proofs are provided in the supplementary appendix.

Lemma A.7. Suppose PJ(γ) = PJ(γ0) for γ0, γ ∈ ΓJ . Let {rJ : J ≥ 1} be a sequence such

that

(i) rJ → 0,

(ii) kJ
c−1
Q (c−1

p̄ (arJ/2))
exp(− 1

128

NJa
2r2

J

k2
J

)→ 0, and

(iii)
αkJ

rJc
−1
Q (c−1

p̄ (arJ/2))
→ 0

for some sequence {kJ : J ≥ 1} and some a > 0. Then, under the assumptions of Theo-

rem 2.3, for all x ∈ X and t0 ∈ Θ0(x), ∃t ∈ Θ(x) such that |p̄0(x, t0)− p̄(x, t)| ≤ arJ .

Lemma A.8. Suppose PJ(γ) = PJ(γ0) for γ0, γ ∈ ΓJ . Under the assumptions of Theo-

rem 2.3, for all x ∈ X , t ∈ Θ(x), and any sequences {rJ : J ≥ 1} and {kJ : J ≥ 1}, if

|m0 − p̄(x, t)| ≤ rJ/2 for some m0 ∈ [0, 1] then

∣∣G(x, t)− E(Y | |M̄ −m0| ≤ rJ , X = x)
∣∣

≤ b11

αk̃J + kJ exp(−b12ξJ) + α∗kJ
c−1
Q (c−1

p̄ (rJ/2))− b13(kJ exp(−b14ξJ) + α∗kJ )
+ cG(cp̄−1(3rJ))

for some positive constants b11, . . . , b14, where ξJ :=
NJr

2
J

k2
J

and α∗kJ =
αkJ

rJ
.

Lemma A.9. Suppose PJ(γ) = PJ(γ0) for γ0, γ ∈ ΓJ . Then, under the assumptions of

Theorem 2.3, for all x ∈ X , t0 ∈ Θ0(x) and {rJ : J ≥ 1}, and for any t ∈ Θ(x) such that

|p̄0(x, t0)− p̄(x, t)| ≤ rJ/2,

|t− t0| ≤ b21

(
kJ exp(−b24ξJ) + α∗kJ

)
+ b22cp−1

j0

(
b23

αk̃J + kJ exp(−b25ξJ) + α∗kJ
c−1
Q (c−1

p̄ (rJ))− b26(kJ exp(−b27ξJ) + α∗kJ )
+ cpj0 (cp̄−1(3rJ))

)

for some positive constants b21, . . . , b27, where ξJ :=
NJr

2
J

k2
J

and α∗kJ =
αkJ

rJ
.

A.5 Additional proofs

Proof of Corollary 2.1 Because Fθ is absolutely continuous there exists a density function

fθ such that
∫
G(x, t)dFθ(t) =

∫∞
−∞G(x, t)fθ(t)dt.
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Divide the interval [−ψ−1/2
J , ψ

−1/2
J ] into SJ = 2ψ−1

J intervals of size ψ
1/2
J , [t00, t

1
0], ..., [tSJ−1

0 , tSJ
0 ].

Then uniform continuity of G(x, t) can be used to show that∣∣∣∣∣
∫ ψ

−1/2
J

−ψ−1/2
J

G0(x, t0)f 0
θ (t0)dt0 −

SJ∑
s=1

G0(x, ts0)(F 0
θ (ts0)− F 0

θ (ts−1
0 ))

∣∣∣∣∣
≤

SJ∑
s=1

∫ ts0

ts−1
0

|G0(x, t0)−G0(x, ts0)|f 0
θ (t0)dt0 (A.43)

≤ Cψ
1/2
J .

In addition, because ||G0(x, t0)|| ≤ Ȳ , if ψJ → 0 then

lim
J→∞

∫ −ψ−1/2
J

−∞
G0(x, t0)f 0

θ (t0)dt0 = lim
J→∞

∫ ∞
ψ
−1/2
J

G0(x, t0)f 0
θ (t0)dt0 = 0.

By Lemma A.3, for each s there is a ts such that |p̄(x, ts)− p̄0(x, ts0)| ≤ rJ/2. The only thing

left is to show that∣∣∣∣∣
SJ∑
s=1

G0(x, ts0)(F 0
θ (ts0)− F 0

θ (ts−1
0 ))−

SJ∑
s=1

G(x, ts)(Fθ(t
s)− Fθ(ts−1))

∣∣∣∣∣→ 0. (A.44)

Without Assumption 2.3, the arguments in the proof of Lemma A.5 instead lead to

|Fθ(t)− F 0
θ (t0)| ≤ 4C

c
δJ + 2ρJ (A.45)

where δJ and ρJ are as defined in the proof of Theorem 2.1.

Therefore, taking ψJ such that rJ = O(ψ2
J)∣∣∣∣∣

SJ∑
s=1

G0(x, ts0)(F 0
θ (ts0)− F 0

θ (ts−1
0 ))−

SJ∑
s=1

G(x, ts)(Fθ(t
s)− Fθ(ts−1))

∣∣∣∣∣
≤

SJ∑
s=1

|G0(x, ts0)−G(x, ts)| (F 0
θ (ts0)− F 0

θ (ts−1
0 )) (A.46)

+

SJ∑
s=1

G(x, ts)
∣∣(F 0

θ (ts0)− F 0
θ (ts−1

0 ))− (Fθ(t
s)− Fθ(ts−1))

∣∣
≤ max

x,s
|G0(x, ts0)−G(x, ts)|+ 2Ȳ SJ

(
4C

c
δJ + 2ρJ

)
→ 0

since 4C
c
δJ + 2ρJ = O(rJ) = O(ψ2

J) and SJψ
2
J → 0.
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Proof of Corollary 2.2 The proof of Lemma A.5 can be modified to show that

|Pr(M̄ < m0)− t0| ≤ c−1rJ + ρJ (A.47)

and

|Pr(M̄ < m0)− t| ≤ 2c−1rJ + ρJ (A.48)

without using Assumption 2.4 because p̄(X, θ) = p̄(θ) implies that Pr(|M̄−p̄(θ)| > δJ) ≤ ρJ .

The rest of the proof is identical to that of Theorem 2.1.

Proof of Theorem 5.1 For any J ⊆ {1, . . . , J} and any c ∈ {0, 1},

E(Y c
∏
j∈J

Mj | X = x) =

∫
E(Y c

∏
j∈J

Mj | X = x, θ = t)dFθ|X=x(t | x)

=

∫
E(Y c | X = x, θ = t)

∏
j∈J

E(Mj | X = x, θ = t)dFθ|X=x(t | x)

(A.49)

=

∫
G(x, t)c

∏
j∈J

pj(x, t)dFθ|X(t | x)

where the first equality follows from the law of iterated expectations, the second from As-

sumption 2.5, and the third from Assumption 2.1 and the definition of pj.
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Bias RMSE Bias RMSE Bias RMSE Bias RMSE
10 0.500 0.501 0.303 0.303 0.000 0.013 0.136 0.142
30 0.502 0.504 0.280 0.280 0.001 0.013 0.082 0.096
100 0.502 0.503 0.268 0.268 0.001 0.013 0.061 0.079

10 0.499 0.499 0.295 0.296 0.000 0.009 0.120 0.123
30 0.501 0.501 0.273 0.273 0.001 0.008 0.076 0.083
100 0.498 0.498 0.260 0.260 0.002 0.010 0.058 0.067

10 0.503 0.503 0.295 0.295 0.000 0.007 0.088 0.092
30 0.500 0.500 0.273 0.273 0.001 0.006 0.049 0.053
100 0.500 0.501 0.259 0.260 0.000 0.007 0.024 0.034

2000

5000

Table 1. Monte Carlo simulations

n J no controls score infeasible proposed method

1000

Notes: These results were obtained by simulating the model described in Section 3.3 100 times for each pair of  n and J. The first 
column is the difference in sample means. The second column was obtained by conditioning nonparametrically on the percentile of  
the average of  the proxies. The third was obtained by conditioning nonparametrically on the true latent variables. The fourth 
estimator is the estimator proposed in Section 3.2. All kernel regressions used the Epanechnikov kernel.





item ATE 90%	
  conf.	
  int. item ATE 90%	
  conf.	
  int.
1 0.011 [-­‐0.008,	
  0.031] 17 0.109 [0.068,	
  0.155]
2 0.029 [0.008,	
  0.049] 18 0.114 [0.039,	
  0.164]
3 0.032 [-­‐0.004,	
  0.058] 19 0.069 [0.025,	
  0.113]
5 0.045 [-­‐0.002,	
  0.078] 20 0.122 [0.061,	
  0.172]
6 0.042 [0.001,	
  0.087] 21 0.106 [0.034,	
  0.151]
7 0.027 [-­‐0.008,	
  0.061] 22 0.141 [0.076,	
  0.177]
8 0.062 [0.021,	
  0.104] 23 0.148 [0.095,	
  0.2]
9 0.072 [0.029,	
  0.109] 24 0.142 [0.064,	
  0.205]
10 0.057 [0.028,	
  0.097] 25 0.085 [0.025,	
  0.142]
11 0.046 [0.005,	
  0.086] 26 0.071 [0.009,	
  0.112]
12 0.054 [0.005,	
  0.095] 27 0.119 [0.05,	
  0.165]
13 0.108 [0.053,	
  0.16] 28 0.114 [0.046,	
  0.164]
14 0.067 [0.015,	
  0.119] 29 0.113 [0.034,	
  0.138]
15 0.078 [0.04,	
  0.119] 30 0.106 [0.054,	
  0.156]
16 0.057 [0.005,	
  0.105] avg. 0.081 [0.046,	
  0.104]
Notes:	
  This	
  table	
  reports	
  estimates	
  of	
  the	
  the	
  average	
  treatment	
  effect	
  (ATE)	
  of	
  high	
  
school	
  graduation	
  on	
  the	
  probability	
  of	
  a	
  correct	
  response	
  to	
  each	
  item.	
  For	
  each	
  item,	
  
ATE	
  was	
  estimated	
  as	
  described	
  in	
  the	
  text.	
  The	
  90%	
  confidence	
  intervals	
  were	
  computed	
  
from	
  simulating	
  200	
  bootstrap	
  samples.	
  The	
  estimates	
  are	
  based	
  on	
  a	
  sample	
  of	
  1,927	
  
white	
  males	
  from	
  the	
  NLSY.	
  See	
  the	
  text	
  for	
  a	
  further	
  description	
  of	
  the	
  sample.

Table	
  2.	
  Average	
  treatment	
  effect	
  of	
  schooling	
  on	
  the	
  Arithmetic	
  Reasoning	
  component	
  of	
  
the	
  AFQT	
  in	
  the	
  NLSY79



model OLS 
no proxies 0.23
M1 only 0.23 -0.34 0.56

M1 and M2 0.21 -0.26 0.22
M1, M2, and M3 0.20 -0.06 0.21

Table 3. Civic returns to education

 Notes: The first column in this table reports the coefficient 
on SomeCollege in an OLS regression that uses the proxies 
as controls. The outcome is an indicator for whether the 
individual has voted in and election in the past two years. 
The sample size is 10,515.

ATE bounds



Figure 1: The effect of schooling on individual items from the AR component of the ASVAB
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Notes: The ASF estimates in the three panels are computed as described in the text treating responses to

the 28th, 29th, and 30th items on the Arithmetic Reasoning component of the ASVAB as the outcome. The

Epanechnikov kernel was used in both steps. The shaded region is a 90% confidence interval computed using

200 bootstrap samples. Estimates are based on a sample of size 1, 927 from the NLSY79.



Figure 2: The effect of schooling on individual items from the AR component of the ASVAB
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Notes: The ASF estimates in the three panels are computed as described in the text treating responses to

the 28th, 29th, and 30th items on the Arithmetic Reasoning component of the ASVAB as the outcome. The

Epanechnikov kernel was used in both steps. The shaded region is a 90% confidence interval computed using

200 bootstrap samples. Estimates are based on a sample of size 1, 927 from the NLSY79.



Figure 3: The effect of schooling on the AR component of the ASVAB
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Notes: The ATE estimate is computed as described in the text. The Epanechnikov kernel was used in both

steps. The shaded region is a 90% confidence interval computed using 200 bootstrap samples. Estimates are

based on a sample of size 1, 927 from the NLSY79.



Figure 4: Bounds on the ATE, examples 1 and 2
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Notes: Each bar represents bounds on the ATE. In each grouping, the first bar represents the trivial bounds,

the second represents bounds based on only M1, and the third bar represents bounds based on M1 and

M2. In the model used in panel A, β = 1, s = 0, βj = 0, α1 = α2 = 0.99, and µY , µ1, µ2 are set so

that E(M1) = 0.5, E(M2) = 0.9, and ASF (0) = 0.7. The model used in panel B is the same except that

α1 = α2 = 0.5. In all models, j0 = 1. I used the approximation method described in Appendix C with a

uniformly spaced partition of S = 40 points and set εS = 10−6. The ATE in the data generating process is

0.24.



Figure 5: Bounds on the ATE, examples 3-5
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Notes: Each bar represents bounds on the ATE. In each grouping, the first bar represents the trivial bounds,

the second represents bounds based on only M1, and the third bar represents bounds based on M1 and

M2. In the model used in panel A, β = 1, s = 0, βj = 0, α1 = α2 = 0.5, and µY , µ1, µ2 are set so that

E(M1) = 0.9, E(M2) = 0.5, and ASF (0) = 0.7. The model used in panel B is the same except that s = 1

so that E(θ | X = 1)− E(θ | X = 0) = 0.33. The model used in panel C is the same except that s = 1 and

β2 = 1. In all models, j0 = 1. I used the approximation method described in Appendix C with a uniformly

spaced partition of S = 40 points and set εS = 10−6. The ATE in the data generating process is 0.24.



Figure 6: Bounds on the conditional ATE of education on the probability of voting
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Notes: The bounds are computed as described in Section 4.1. Estimates are based on a sample of size 10, 515

from the HSB longitudinal survey.
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