
Online supplement to: Identification of a Nonseparable

Model under Endogeneity using Binary Proxies for

Unobserved Heterogeneity

Benjamin Williams ∗

June 9, 2018

Contents

B Proofs of lemmas in Appendix A 2

C Asymptotic theory for estimators 13

C.1 Additional assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

C.2 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

C.3 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

D Additional details regarding Section 3 23

E Computation of the identified set 24

E.1 The identified set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

E.2 Approximation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

E.3 Estimation of bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

∗George Washington University, Monroe Hall 309, 2115 G Street NW, Washington, DC 20052, bd-
williams@gwu.edu

1



B Proofs of lemmas in Appendix A

Proof of Lemma A.2 First, if A ≤ z then either B ≤ z + x or |A−B| > x so

Pr(A ≤ z) ≤ Pr(B ≤ z + x) + Pr(|A−B| > x) (B.1)

≤ Pr(B ≤ z′ + x+ w) + Pr(|A−B| > x).

Therefore,

Pr(A ≤ z)− Pr(B ≤ z′) ≤ Pr(B ≤ z′ + x+ w)− Pr(B ≤ z′) + y (B.2)

≤ f̄B(x+ w) + y.

Similarly, if B ≤ z − x then either A ≤ z or |A−B| > x, so

Pr(B ≤ z′ − x− w) ≤ Pr(B ≤ z − x) (B.3)

≤ Pr(A ≤ z) + Pr(|A−B| > x),

which implies that

Pr(A ≤ z)− Pr(B ≤ z′) ≥ − (Pr(B ≤ z′)− Pr(B ≤ z′ − x− w))− y (B.4)

≥ −f̄B(x+ w)− y.

The result then follows from (B.2) and (B.4).

Proof of Lemma A.6 First, let α(x) := αbxc for any positive real number x. Because αk →
0 as k →∞, there exists a sequence of positive numbers xN → 0 such that α(A1/2N1/2xN) ≤
xN for all sufficiently large N .1 Next, to simplify the notation, define c∗(r) := c−1

Q (c−1
p̄ (r)).

Because c∗(r) is a continuous, strictly increasing function such that c∗(0) = 0, I can define

rN such that rNc
∗(rN) = x

1/2
N for N sufficiently large.2 Moreover, for this sequence xN → 0

implies that rN → 0 since otherwise rNc
∗(rN) is bounded away from 0.

Define krN = A1/3N1/3r
2/3
N c∗(rN)1/3x

1/2
N and kN = bkrNc. For sufficiently large N , c∗(rN) <

1For N = 1, there exists x1 satisfying this inequality is guaranteed since α(·) is a nonincreasing function.
Then for each N > 1, if α(A1/2(N−1)1/2xN−1) ≤ xN−1 then α(A1/2N1/2xN−1) ≤ α(A1/2(N−1)1/2xN−1) ≤
xN−1. Therefore, I can define xN = inf{x ≤ xN−1 : α(A1/2N1/2x) ≤ x}. If limN→∞ xN 6= 0 then there is
some ε > 0 such that xN > ε infinitely often. By the definition of xN , this implies that α(A1/2N1/2ε) > ε
infinitely often, which is a contradiction since limx→∞ α(x) = 0.

2Let f(r) = rc∗(r) and consider some r̄ > 0. Since 0 = f(0) < f(r̄), and since xN → 0, for all N
sufficiently large, f(0) ≤ √xN < f(r̄). By the intermediate value theorem for each such N there must be
0 ≤ rN ≤ r̄ such that f(rN ) =

√
xN .
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1 and rN < 1 so r
2/3
N c∗(rN)1/3 > rNc

∗(rN). Since α(·) is decreasing,

αkN = α(krN) ≤ α(A1/3N1/3rNc
∗(rN)x

1/2
N )

= α(A1/3N1/3xN)

≤ xN = rNc
∗(rN)x

1/2
N

I have shown that
αkN

rN c∗(rN )
≤ x

1/2
N → 0, as desired. Note also that, since since rN = o(1)

and xN = o(1),
krN
N

= A1/3N−2/3r
2/3
N c∗(rN)1/3x

1/2
N → 0. Therefore, kN = o(N). This in turn

implies that for any κ > 0, κN ≥ krN for sufficiently large N . Since α(·) is decreasing and

rN = o(1),

α(κN)

c∗(rN)
≤ α(krN)

c∗(rN)

= rN
α(krN)

rNc∗(rN)
→ 0

Finally, because log(z) ≤ z,

(krN)2log

(
krN

c∗(rN)x
3/2
N

)
≤

(
(krN)3

c∗(rN)x
3/2
N

)
= ANr2

N

Rearranging this inequality,

krN
c∗(rN)

exp

(
−A Nr2

N

(krN)2

)
≤ x

3/2
N → 0

The desired result follows since kN ≤ krN implies that

kN
c∗(rN)

exp

(
−ANr

2
N

k2
N

)
≤ krN
c∗(rN)

exp

(
−A Nr2

N

(krN)2

)
.

Before proving Lemmas A.7-A.9 we provide an extension of Lemma A.1 to allow for weak

dependence. The result is based on the following version of Azuma’s inequality, which is a

standard result.

Lemma B.1. (Azuma’s inequality) Suppose Fj is a filtration and Zj is a martingale differ-

ence with respect to Fj. In addition, suppose w1,J , . . . , wJ,J and d1,J , . . . , dJ,J are constants
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such that |wj,JZj| ≤ dj,J . Then, for any ε > 0,

Pr

(∣∣∣∣∣
J∑
j=1

wj,JZj

∣∣∣∣∣ > ε

)
≤ 2 exp

(
−1

2

ε2∑J
j=1 dj,J

)

Lemma B.2. Suppose w1,J , . . . , wJ,J are constants with wJ =
∑J

j=1wj,J . If the random

variables X, θ,M1, . . . ,MJ , . . . satisfy condition (i) of Assumption 2.8 then, for any ε > 0

and any sequence of integers kJ ≥ 1,

Pr

(
w−1
J |

J∑
j=1

wj,J(Mj − E(Mj | X, θ))| > ε

)
≤ 2kJ exp

(
−1

8

wJε
2

k2
J

)
+

2αkJ
ε

Proof. First, let Fj denote the sigma algebra generated by {X, θ,M1, . . . ,Mj} for j ≥ 1 and

the sigma algebra generated by {X, θ} for j ≤ 0. Then for any k ≥ 1,

|Mj − E(Mj | X, θ)|

≤
k−1∑
s=0

|E(Mj | Fj−s)− E(Mj | Fj−s−1)|+ |E(Mj | Fj−k)− E(Mj | X, θ)|

Therefore, taking a sequence of integers kJ ≥ 1,

Pr(w−1
J |

J∑
j=1

wj,J(Mj − E(Mj | X, θ))| > ε) (B.5)

≤
kJ−1∑
s=0

Pr(w−1
J |

J∑
j=1

wj,J(E(Mj | Fj−s)− E(Mj | Fj−s−1))| > ε/(2kJ))

+ Pr(w−1
J |

J∑
j=1

wj,J(E(Mj | Fj−kJ )− E(Mj | X, θ))| > ε/2)

Clearly E(Mj | Fj−s) − E(Mj | Fj−s−1) is a martingale difference with respect to the

filtration Fj−s. Therefore, applying Azuma’s inequality with dj,J = wj,J (since 0 ≤Mj ≤ 1),

the first term can be bounded,

kJ−1∑
s=0

Pr(w−1
J |

J∑
j=1

wj,J(E(Mj | Fj−s)− E(Mj | Fj−s−1))| > ε/(2kJ))

≤ 2kJ exp

(
−1

8

wJε
2

k2
J

)
(B.6)
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Applying Markov’s inequality to the second term of (B.5),

Pr(w−1
J |

J∑
j=1

wj,J(E(Mj | Fj−kJ )− E(Mj | X, θ))| > ε/2)

≤ 2

wJε

J∑
j=1

|wj,J |E (|E(Mj | Fj−kJ )− E(Mj | X, θ)|)

≤ 2

wJε
αk

J∑
j=1

wj,J (B.7)

The desired result follows by combining (B.5)-(B.7).

Proof of Lemma A.7 Fix x ∈ X and t0 ∈ Θ0(x). I will first show that

Pr(|M̄ − p̄0(x, t0)| ≤ arJ/2 | X = x)

≥ c−1
Q (c−1

p̄ (arJ/2))− 2π−1
X kJ exp(− 1

128

NJa
2r2
J

k2
J

)− 8π−1
X

αkJ
arJ

(B.8)

where πX = infx′∈X Pr(X = x′). First, by iterating expectations and then restricting the

range of θ,

Pr(|M̄ − p̄0(x, t0)| ≤ arJ/2 | X = x) (B.9)

=

∫
Pr(|M̄ − p̄0(x, t0)| ≤ arJ/2 | X = x, θ = τ)dF 0

θ|X=x(τ)

≥
∫
τ :|p̄0(x,τ)−p̄0(x,t0)|≤arJ/4

Pr(|M̄ − p̄0(x, t0)| ≤ arJ/2 | X = x, θ = τ)dF 0
θ|X=x(τ)

=

∫
τ :|p̄0(x,τ)−p̄0(x,t0)|≤arJ/4

(
1− Pr(|M̄ − p̄0(x, t0)| > arJ/2 | X = x, θ = τ)

)
dF 0

θ|X=x(τ)

≥
∫
τ :|p̄0(x,τ)−p̄0(x,t0)|≤arJ/4

(
1− Pr(|M̄ − p̄0(x, τ)| > arJ/4 | X = x, θ = τ)

)
dF 0

θ|X=x(τ)

where the last inequality follows because |M̄−p̄0(x, τ)| ≥ |M̄−p̄0(x, t0)|−|p̄0(x, τ)−p̄0(x, t0)|.
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Next, applying the law of iterated expectations in reverse,∫
τ :|p̄0(x,τ)−p̄0(x,t0)|≤arJ/4

(
1− Pr(|M̄ − p̄0(x, τ)| > arJ/4 | X = x, θ = τ)

)
dF 0

θ|X=x(τ)

=

∫
τ :|p̄0(x,τ)−p̄0(x,t0)|≤arJ/4

dF 0
θ|X=x(τ) (B.10)

−
∫
τ :|p̄0(x,τ)−p̄0(x,t0)|≤arJ/4

Pr(|M̄ − p̄0(x, τ)| > arJ/4 | X = x, θ = τ)dF 0
θ|X=x(τ)

≥ Pr(|p̄0(x, θ)− p̄0(x, t0)| ≤ arJ/4 | X = x)− Pr(|M̄ − p̄0(x, θ)| > arJ/4 | X = x)

By Assumptions 2.10 and A.1,

Pr(|p̄0(x, θ)− p̄0(x, t0)| ≤ arJ/4 | X = x) (B.11)

= F 0
θ|X=x(p̄

−1
0 (p̄0(x, t0) + arJ/4;x))− F 0

θ|X=x(p̄
−1
0 (p̄0(x, t0)− arJ/4;x))

≥ c−1
Q (c−1

p̄ (arJ/2))

and applying Lemma B.2,

Pr(|M̄ − p̄0(x, θ)| > arJ/4 | X = x) ≤ Pr(|M̄ − p̄0(X, θ)| > arJ/4, X = x)

Pr(X = x)
(B.12)

≤ 2π−1
X kJ exp(− 1

128

NJa
2r2
J

k2
J

) + 8π−1
X

αkJ
arJ

Inequality (B.8) follows from (B.9)-(B.12).

On the other hand, consider the model parameterized by γ ∈ ΓJ . If |M̄ − p̄0(x, t0)| ≤
arJ/2 then for any τ either |p̄(x, τ)− p̄0(x, t0)| ≤ arJ or |M̄ − p̄(x, τ)| > arJ/2. Therefore,

Pr(|M̄ − p̄0(x, t0)| ≤ arJ/2 | X = x) (B.13)

=

∫
Pr(|M̄ − p̄0(x, t0)| ≤ arJ/2 | X = x, θ = τ)dFθ|X=x(τ)

≤
∫
Pr(|p̄(x, τ)− p̄0(x, t0)| ≤ arJ | X = x, θ = τ)dFθ|X=x(τ)

+

∫
Pr(|M̄ − p̄(x, τ)| > arJ/2 | X = x, θ = τ)dFθ|X=x(τ)

= Pr(|p̄(x, θ)− p̄0(x, t0)| ≤ arJ | X = x) + Pr(|M̄ − p̄(x, θ)| > arJ/2 | X = x)

Using the definition of M̄ in equation (A.35) and applying Lemma B.2, with wj,J = 1(j ∈
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J J
m(η)) so that wJ = NJ , since γ must also satisfy Assumption 2.8,

Pr(|M̄ − p̄(x, θ)| > arJ/2 | X = x) ≤ 2π−1
X kJ exp(− 1

32

NJa
2r2
J

k2
J

) + 4π−1
X

αkJ
arJ

(B.14)

To prove the result by contradiction, suppose that |p̄(x, τ) − p̄0(x, t0)| > arJ for all

τ ∈ Θ(x). Then Pr(|p̄(x, θ) − p̄0(x, t0)| < arJ | X = x) = 0 and (B.8), (B.13), and (B.14)

together imply that

c−1
Q (c−1

p̄ (arJ/2))− 2π−1
X kJ exp(− 1

128

NJa
2r2
J

k2
J

)− 8π−1
X

αkJ
arJ

≤ Pr(|M̄ − p̄0(x, t0)| ≤ arJ/2 | X = x) (B.15)

≤ 2π−1
X kJ exp(− 1

32

NJa
2r2
J

kJ
) + 4π−1

X

αkJ
arJ

which implies that

1− 2π−1
X

kJ

c−1
Q (c−1

p̄ (arJ/2))
exp

(
− 1

128

NJa
2r2
J

k2
J

)
− 8π−1

X

αkJ
arJc

−1
Q (c−1

p̄ (arJ/2))
(B.16)

≤ 2π−1
X

kJ

c−1
Q (c−1

p̄ (arJ/2))
exp

(
− 1

32

NJa
2r2
J

kJ

)
+ 4π−1

X

αkJ
arJc

−1
Q (c−1

p̄ (arJ/2))

which implies a contradiction for large enough J since rJ ,kJ , and a were chosen so that the

left hand side has a limit of 1 and the right hand side a limit of 0. I can conclude that for

all sufficiently large J , ∃t ∈ Θ(x) such that |p̄0(x, t0)− p̄(x, t)| ≤ arJ .

Proof of Lemma A.8 Consider any x ∈ X and t ∈ Θ(x), and let m0 be such that

|m0 − p̄(x, t)| ≤ rJ/2.

First, M̄ is measurable with respect to {Mj : j ∈ J J
Y (η)} so that E(Y | |M̄ − m0| ≤

rJ , X = x) = E(E(Y | X, θ, {Mj : j ∈ J J
Y (η)}) | |M̄ −m0| ≤ rJ , X = x). Therefore,

∣∣G(x, t)− E(Y | |M̄ −m0| ≤ rJ , X = x)
∣∣

≤
∣∣G(x, t)− E(E(Y | X, θ) | |M̄ −m0| ≤ rJ , X = x)

∣∣ (B.17)

+
∣∣E (E(Y | X, θ, {Mj : j ∈ J J

Y (η)})− E(Y | X, θ) | |M̄ −m0| ≤ rJ , X = x
)∣∣

For any random variable Z and event A, E(|Z| | A) = E(|Z|)−E(|Z||Ac)(1−Pr(A))
Pr(A)

≤ E(|Z|)
Pr(A)

.
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Therefore,

∣∣E (E(Y | X, θ, {Mj : j ∈ J J
Y (η)})− E(Y | X, θ) | |M̄ −m0| ≤ rJ , X = x

)∣∣
≤
E
(∣∣E(Y | X, θ, {Mj : j ∈ J J

Y (η)})− E(Y | X, θ)
∣∣)

Pr(|M̄ −m0| ≤ rJ | X = x)Pr(X = x)
(B.18)

≤
αk̃J

Pr(|M̄ −m0| ≤ rJ | X = x)Pr(X = x)

where the second inequality follows from Assumption 2.8.

Next, by Assumption 2.1, and because γ is observationally equivalent to γ0,

|G(x, t)− E(E(Y | X, θ) | |M̄ −m0| ≤ rJ , X = x)|

=

∣∣∣∣∫ (G(x, t)−G(x, τ)) dFθ||M̄−m0|≤rJ ,X=x(τ)

∣∣∣∣
≤
∫
τ :|p̄(x,τ)−p̄(x,t)|≤3rJ

|G(x, τ)−G(x, t)|dFθ||M̄−m0|≤rJ ,X=x(τ) (B.19)

+

∫
τ :|p̄(x,τ)−p̄(x,t)|>3rJ

|G(x, τ)−G(x, t)|dFθ||M̄−m0|≤rJ ,X=x(τ)

≤ cG(cp̄−1(3rJ)) +BPr(|p̄(x, θ)− p̄(x, t)| > 3rJ | |M̄ −m0| ≤ rJ , X = x)

The first term in the final line follows because |G(x, τ)−G(x, t)| ≤ cG(|τ − t|) and because

Assumption 2.9 implies strict monotonicity of p̄(x, ·) so that

|τ − t| = |p̄−1(p̄(x, τ);x)− p̄−1(p̄(x, t);x)| (B.20)

≤ cp̄−1(|p̄(x, τ)− p̄(x, t)|)

The second term in the final line of (B.19) follows because G(x, ·) is uniformly continuous

on a compact subset of R for each x and |X | is finite and therefore there is some positive

constant B <∞ such that supx∈X ,t∈Θ(x) |G(x, t)| ≤ B/2.

Next, recall that it is assumed that |m0− p̄(x, t)| ≤ rJ/2. Thus, if |p̄(x, θ)− p̄(x, t)| > 3rJ

and |M̄ −m0| ≤ rJ then

|M̄ − p̄(x, θ)| ≥ |p̄(x, θ)− p̄(x, t)| − |M̄ −m0| − |m0 − p̄(x, t)| > rJ (B.21)

and therefore

Pr(|p̄(x, θ)− p̄(x, t)| > 3rJ | |M̄ −m0| ≤ rJ , X = x)

≤ Pr(|M̄ − p̄(x, θ)| > rJ | |M̄ −m0| ≤ rJ , X = x) (B.22)
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and then

Pr(|M̄ − p̄(x, θ)| > rJ | |M̄ −m0| ≤ rJ , X = x)

=
Pr(|M̄ − p̄(X, θ)| > rJ , |M̄ −m0| ≤ rJ , X = x)

Pr(|M̄ −m0| ≤ rJ , X = x)

≤ Pr(|M̄ − p̄(X, θ)| > rJ)

Pr(|M̄ −m0| ≤ rJ , X = x)
(B.23)

Using the definition of M̄ in equation (A.35) and applying Lemma B.2, with wj,J = 1(j ∈
J J
m(η)) so that wJ = NJ , since γ must also satisfy Assumption 2.8,

Pr(|M̄ − p̄(X, θ)| > rJ) ≤ 2kJ exp(−1

8

NJr
2
J

k2
J

) + 2
αkJ
rJ

(B.24)

Combining this with equations (B.17)-(B.23),

∣∣G(x, t)− E(Y | |M̄ −m0| ≤ rJ , X = x)
∣∣ (B.25)

≤
αk̃J + 2BkJ exp(−1

8

NJr
2
J

k2J
) + 2B

αkJ
rJ

Pr(|M̄ −m0| ≤ rJ , X = x)
+ cG(cp̄−1(3rJ))

The desired result follows because Pr(|M̄ − m0| ≤ rJ , X = x) = Pr(|M̄ − m0| ≤ rJ |
X = x)Pr(X = x), Pr(X = x) ≥ πX := infx′∈X Pr(X = x′), and

Pr(|M̄ −m0| ≤ rJ | X = x) ≥ c−1
Q (c−1

p̄ (rJ/2))− 2π−1
X kJ exp(− 1

128

NJr
2
J

k2
J

)− 8π−1
X

αkJ
rJ

(B.26)

The proof is concluded by proving (B.26). Since |m0 − p̄(x, t)| ≤ rJ/2, Pr(|M̄ −m0| ≤ rJ |
X = x) ≥ Pr(|M̄−p̄(x, t)| ≤ rJ/2 | X = x). Following the arguments in lines (B.9) and (B.10)

of the proof of Lemma A.7,

Pr(|M̄ − p̄(x, t)| ≤ rJ/2 | X = x) (B.27)

≥ Pr(p̄(x, θ)− p̄(x, t)| ≤ rJ/4 | X = x)− Pr(|M̄ − p̄(x, θ)| > rJ/4 | X = x) (B.28)
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By Assumptions 2.10 and A.1,

Pr(|p̄(x, θ)− p̄(x, t)| ≤ rJ/4 | X = x) (B.29)

= Fθ|X=x(p̄
−1(p̄(x, t) + rJ/4;x))− Fθ|X=x(p̄

−1(p̄(x, t)− rJ/4;x))

≥ c−1
Q (c−1

p̄ (rJ/2))

and applying Lemma B.2,

Pr(|M̄ − p̄(x, θ)| > rJ/4 | X = x) ≤ 2π−1
X kJ exp(− 1

128

NJr
2
J

k2
J

) + 8π−1
X

αkJ
rJ

(B.30)

This proves inequality (B.26) and completes the proof.

Proof of Lemma A.9 For any x′ ∈ X and m′0 ∈ [0, 1], define T (m′0, x
′; rJ) := E(Mj0 |

|M̄−m′0| ≤ rJ , X = x′). I will show below that for any t′0 ∈ Θ0(x′), if |p̄0(x′, t′0)−m′0| < rJ/2

then

|T (m′0, x
′; rJ)− pj0,0(t′0)| (B.31)

≤ δJ :=
αk̃J + 2BkJ exp(−1

8

NJr
2
J

k2J
) + 2B

αkJ
rJ

πXc
−1
Q (c−1

p̄ (rJ/2))− 2kJ exp(− 1
128

NJr
2
J

k2J
)− 8

αkJ
rJ

+ cpj0 (cp̄−1(3rJ))

where πX := inf x′ ∈ XPr(X = x). This in turn implies that

Pr(|T (M̄,X; rJ)− pj0,0(θ)| > δJ) ≤ Pr(|p̄0(X, θ)− M̄ | > rJ/2) (B.32)

≤ ρJ := 2kJ exp(− 1

32

NJr
2
J

k2
J

) + 4
αkJ
rJ

where the second line follows from Lemma B.2.

Since γ is observationally equivalent to γ0, the exact same argument shows that for any

t′ ∈ Θ(x′), if |p̄(x′, t′)−m′0| ≤ rJ/2 then

|T (m′0, x
′; rJ)− pj0(t′)| ≤ δJ (B.33)

and hence

Pr(|T (M̄,X; rJ)− pj0(θ)| ≥ δJ) ≤ Pr(|p̄(X, θ)− M̄ | ≥ rJ/2) ≤ ρJ (B.34)
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It can also be concluded that for m0 = p̄0(x, t0), since, by assumption, |m0− p̄(x, t)| ≤ rJ/2,

|pj0,0(t0)− pj0(t)|

≤ |T (m0, x; rJ)− pj0,0(t0)|+ |T (m0, x; rJ)− pj0(t)| (B.35)

≤ 2δJ

Then (B.32) implies that

Pr(T (M̄,X; rJ) ≤ pj0,0(t0))

≤ Pr(pj0,0(θ) ≤ pj0,0(t0) + δJ) + Pr(|T (M̄,X; rJ)− pj0,0(θ)| > δJ) (B.36)

≤ p−1
j0,0

(pj0,0(t0) + δJ) + ρJ

since Pr(pj0,0(θ) ≤ pj0,0(t0) + δJ) = Pr
(
θ ≤ p−1

j0,0
(pj0,0(t0) + δJ)

)
and, by Assumption 2.3,

this equals p−1
j0,0

(pj0,0(t0) + δJ). Next, (B.32) similarly implies that

Pr(T (M̄,X; rJ) ≤ pj0,0(t0))

≥ Pr(pj0,0(θ) ≤ pj0,0(t0)− δJ)− Pr(|T (M̄,X; rJ)− pj0,0(θ)| > δJ) (B.37)

≥ p−1
j0,0

(pj0,0(t0)− δJ)− ρJ

Then pj0,0(t0)− δJ ≤ pj0,0(t0) ≤ pj0,0(t0) + δJ implies that

p−1
j0,0

(pj0,0(t0)− δJ) ≤ t0 ≤ p−1
j0,0

(pj0,0(t0) + δJ). (B.38)

So (B.36) and (B.37) together imply that

|Pr(T (M̄,X; rJ) ≤ pj0,0(t0))− t0| ≤ cp−1
j0

(2δJ) + 2ρJ (B.39)

Similarly, (B.34) and (B.35) imply that

Pr(T (M̄,X; rJ) ≤ pj0,0(t0))

≤ Pr(pj0(θ) ≤ pj0,0(t0) + δJ) + Pr(|T (M̄,X; rJ)− pj0(θ)| > δJ) (B.40)

≤ Pr(pj0(θ) ≤ pj0(t) + 3δJ) + Pr(|T (M̄,X; rJ)− pj0(θ)| > δJ)

≤ p−1
j0

(pj0(t) + 3δJ) + ρJ ,

where the second inequality follows because pj0,0(t0) ≤ pj0(t) + 2δJ by (B.35), and that and
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that

Pr(T (M̄,X; rJ) ≤ pj0,0(t0))

≥ Pr(pj0(θ) ≤ pj0,0(t0)− δJ)− Pr(|T (M̄,X; rJ)− pj0(θ)| > δJ) (B.41)

≥ Pr(pj0(θ) ≤ pj0(t)− 3δJ)− Pr(|T (M̄,X; rJ)− pj0(θ)| > δJ)

≥ p−1
j0

(pj0(t)− 3δJ)− ρJ

(B.40) and (B.41) together imply that

|Pr(T (M̄,X; rJ) ≤ pj0,0(t0))− t| ≤ cp−1
j0

(6δJ) + 2ρJ (B.42)

Then (B.39) and (B.42) imply that |t− t0| ≤ 2cp−1
j0

(6δJ) + 4ρJ , the desired result.

It remains to show that (B.31) holds for any x′ ∈ X , any m′0 ∈ [0, 1] and any t′0 ∈ Θ0(x′)

for which |p̄0(x′, t′0)−m′0| < rJ/2. The proof of this is almost identical to the proof of Lemma

A.8 so I will provide only a sketch.

First, M̄ is measurable with respect to {Mj : |j − j0| > k̃J} so that E(Mj0 | |M̄ −m′0| ≤
rJ , X = x′) = E(E(Mj0 | X, θ, {Mj : |j − j0| > k̃J}) | |M̄ −m′0| ≤ rJ , X = x′). Therefore,

∣∣pj0,0(t′0)− E(Mj0 | |M̄ −m′0| ≤ rJ , X = x′)
∣∣

=
∣∣pj0,0(t′0)− E(E(Mj0 | X, θ) | |M̄ −m′0| ≤ rJ , X = x′)

∣∣ (B.43)

+
∣∣∣E (E(Mj0 | X, θ, {Mj : |j − j0| > k̃J})− E(Mj0 | X, θ) | |M̄ −m′0| ≤ rJ , X = x′

)∣∣∣
Next, under Assumption 2.8,∣∣∣E (E(Mj0 | X = x′, θ, {Mj : j ∈ J J

Mj0
})− E(Mj0 | X = x′, θ) | |M̄ −m′0| ≤ rJ , X = x′

)∣∣∣
≤
E
(∣∣∣E(Mj0 | X = x′, θ, {Mj : j ∈ J J

Mj0
}))− E(Mj0 | X = x′, θ)

∣∣∣)
Pr(|M̄ −m′0| ≤ rJ , X = x′)

(B.44)

≤
αk̃J

πXc
−1
Q (c−1

p̄ (rJ/2))− 2kJ exp(− 1
128

NJr
2
J

k2J
)− 8

αkJ
rJ
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and, by Assumption 2.4, E(Mj0 | X = x′, θ) = pj0,0(θ) so that

|pj0,0(t′0)− E(E(Mj0 | X = x′, θ) | |M̄ −m′0| ≤ rJ , X = x′)|

≤
∣∣∣∣∫ (pj0,0(t′0)− pj0,0(τ)) dF 0

θ||M̄−m′0|≤rJ ,X=x′(τ)

∣∣∣∣
≤ cpj0 (cp̄−1(3rJ)) +BPr(|p̄0(x′, θ)− p̄0(x′, t′0)| > 3rJ | |M̄ −m′0| ≤ rJ , X = x′) (B.45)

≤ cpj0 (cp̄−1(3rJ)) +BPr(|M̄ − p̄0(x′, θ)| > rJ | |M̄ −m′0| ≤ rJ , X = x′)

≤ cpj0 (cp̄−1(3rJ)) +
αk̃J + 2BkJ exp(− 1

8b

NJr
2
J

kJ
) + 2B

αkJ
rJ

πXc
−1
Q (c−1

p̄ (rJ/2))− 2kJ exp(− 1
128

NJr
2
J

k2J
)− 8

αkJ
rJ

where the third inequality follows because |p̄0(x′, t′0)−m′0| < rJ/2.

C Asymptotic theory for estimators

This section presents the proof of Theorem 3.2.

C.1 Additional assumptions

First, the regularity conditions omitted in the text are stated. The first set of regularity

conditions strengthen the conditions of Assumption 3.3.

Take η and J J
m as given by Assumption 3.2. I now assume that NJ := |J J

m| = c0J for some

constant 0 < c0 < 1. Moreover, anr ≤ J ≤ bnr for some a, b, r > 0. Let M̄ = N−1
J

∑
j∈J Jm

Mj

and p̄ = N−1
J

∑
j∈J Jm

pj.

Assumption C.1.

The functions pj0 and p̄(x, ·) are differentiable and there are positive constants, m and M ,

such that

i. m < inft∈[0,1]p
′
j0

(t) and supt∈[0,1] pj0(t) < M

ii. m < inft∈[0,1]p̄
′(x, t) and supt∈[0,1] p̄

′(x, t) < M

Assumption C.2. The distribution of Θ | X = x admits a density with respect to Lebesgue

measure on Θx = [θx, θ̄x], denoted fθ|X that satisfies

f
θ|X ≤ fθ|X(t | x) ≤ f̄θ|X

for some constants f
θ|X > 0 and f̄θ|X <∞.

13



Assumption C.3. |Y | < Ȳ and for each x, G(x, t) is locally Lipschitz continuous at t.

Assumption C.4. αk ≤ α0 exp(−α1t)

Assumption C.5.

i. κ1(|u| ≤ 1/2) ≤ K(u) ≤ κ̄1(|u| ≤ 1)

ii. λ1(|u| ≤ 1/2) ≤ L(u) ≤ λ̄1(|u| ≤ 1)

In addition, to derive the asymptotic results it is assumed that {Xi, θi, Ui,Mi}ni=1 is an

i.i.d. sample and I impose the following conditions on the convergence rate of the bandwidths.

Assumption C.6.

i. h1n, h2n → 0 and nh1n, nh2n →∞

ii.
√
log(J)J−1 = o(h1n)

iii. h1n +
√
log(n)n−1h−1

1n = o(h2n)

The first condition is a standard assumption required to ensure that both the first stage

estimator and the infeasible version of the second stage estimator are consistent. The second

and third conditions ensure that the error in estimating the covariates in each stage (M̄i −
p̄(Xi, θi) in the first stage and θ̂i − θi in the second stage) is sufficiently small relative to

the bandwidth so that the bias is not affected. Indeed, it is shown in Lemma C.1 that

max1≤i≤n |θ̂i − θi| = Op(h1n +
√
log(n)n−1h−1

1n ).

C.2 Proof of Theorem 3.2

Proof of Theorem 3.2. Let ψn = 1/
√
nh2n +h2n and suppose n is large enough that h2n/2 is

less than the radius of the neighborhood around t assumed by Assumptions C.3. First, for

any ε∗ > 0,

Pr(|Ĝ(x, t)−G(x, t)| > ε∗ψn) ≤ Pr(|Ĝ(x, t)−G(x, t)| > ε∗ψn, max
1≤i≤n

|θ̂i − θi| < h2n/4)

+ Pr( max
1≤i≤n

|θ̂i − θi| ≥ h2n/4)

where by Lemma C.1 and Assumption C.6 the second term converges to 0 and thus it remains

to bound the first term.
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Let ui = Yi −G(Xi, θi). Then if max1≤i≤n |θ̂i − θi| < h2n/4,

|Ĝ(x, t)−G(x, t)|

≤
1
n

∑n
i=1 Lh2n(θ̂i − t,Xi − x)|G(Xi, θi)−G(x, t)|

1
n

∑n
i=1 Lh2n(θ̂i − t,Xi − x)

+

∣∣∣ 1
n

∑n
i=1 Lh2n(θ̂i − t,Xi − x)ui

∣∣∣
1
n

∑n
i=1 Lh2n(θ̂i − t,Xi − x)

≤ max
1≤i≤n

1(|θ̂i − t| ≤ h2n)|G(x, θi)−G(x, t)|+

∣∣∣ 1
nh2n

∑n
i=1 L(h−1

2n (θ̂i − t))1(Xi = x)ui

∣∣∣
1

nh2n

∑n
i=1 L(h−1

2n (θ̂i − t))1(Xi = x)

≤ ∆(x, t)(h2n + max
1≤i≤n

|θ̂i − θi|) +

∣∣∣ 1
nh2n

∑n
i=1 L(h−1

2n (θ̂i − t))1(Xi = x)ui

∣∣∣
1

nh2n

∑n
i=1 L(h−1

2n (θ̂i − t))1(Xi = x)

≤ 5

4
∆(x, t)h2n +

∣∣∣ 1
nh2n

∑n
i=1 L(h−1

2n (θ̂i − t))1(Xi = x)ui

∣∣∣
1

nh2n

∑n
i=1 L(h−1

2n (θ̂i − t))1(Xi = x)

where the second inequality follows from Assumption C.5 and the third follows from As-

sumption C.3 for sufficiently large n since |θi − t| ≤ |θ̂i − θi| + |θ̂i − t| < 5
4
h2n. Then it

remains to show that D̂(x, t)−1N̂(x, t) = Op(1/
√
nh2n), or more precisely, that

Pr(D̂(x, t)−1N̂(x, t) > ε∗/
√
nh2n, max

1≤i≤n
|θ̂i − θi| < h2n/4)

can be made arbitrarily small by choosing ε∗ large enough, where N̂(x, t) := 1
nh2n

∑n
i=1 L(h−1

2n (θ̂i−
t))1(Xi = x)ui and D̂(x, t) := 1

nh2n

∑n
i=1 L(h−1

2n (θ̂i − t))1(Xi = x).

First, let N̂∗(x, t) = E(N̂(x, t) | {θi, Xi, {Mi,j : j ∈ J J
Y (ηJ)}). Then by Assumption 3.1,

E(|N̂∗(x, t)|) ≤ h−1
2n λ̄αηJ . So by Markov’s inequality,

Pr(|N̂∗(x, t)| > ε/2, max
1≤i≤n

|θ̂i − θi| < h2n/4)

≤ Pr(|N̂∗(x, t)| > ε/2)

≤ 2λ̄αηJ
εh2n

Next, E(N̂(x, t) − N̂∗(x, t)) = 0 and, while max1≤i≤n |θ̂i − θi| < h2n/4, V ar(N̂(x, t) −
N̂∗(x, t)) ≤ 4λ̄2Ȳ 2Pr(|θi − t| < (5/4)h2n)/(nh2

2n).
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Therefore, using Chebyschev’s inequality, for any ε > 0,

Pr(N̂(x, t) > ε, max
1≤i≤n

|θ̂i − θi| < h2n/4)

≤ Pr(|N̂(x, t)− N̂∗(x, t)| > ε/2, max
1≤i≤n

|θ̂i − θi| < h2n/4)

+ Pr(|N̂∗(x, t)| > ε/2, max
1≤i≤n

|θ̂i − θi| < h2n/4)

≤ 25λ̄2Ȳ 2

ε2nh2n

+
2λ̄αηJ
εh2n

Next, if max1≤i≤n |θ̂i − θi| < h2n/4 then

D̂(x, t) ≥ λ
1

nh2n

n∑
i=1

1(|θ̂i − t| < h2n/2)1(Xi = x)

≥ λ
1

nh2n

n∑
i=1

1(|θi − t| < h2n/4)1(Xi = x) := D∗(x, t)

where the first inequality is due to Assumption C.5 and the second line is due to the fact

that |θ̂i−θi| < h2n/4 and |θi− t| < h2n/4 together imply that |θ̂i− t| < h2n/2, by the triangle

inequality. Then,

1

4
h2nf θ|XPr(Xi = x) ≤ E(1(|θi − t| < h2n/4)1(Xi = x)

≤ 1

2
h2nf̄θ|XPr(Xi = x)

by Assumption C.2. Therefore,

E(D∗(x, t)) ≥ λh−1
2nPr(|θi − t| < hn/4 | Xi = x)Pr(Xi = x)

≥ 1

4
λf

θ|XPr(Xi = x)

and

V ar(D∗(x, t)) ≤ λ(nh2
2n)−1Pr(|θi − t| < hn/4 | Xi = x)Pr(Xi = x)

≤ λ(nh2n)−1 1

2
f̄θ|XPr(Xi = x)
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So for d = 1
8
λf

θ|XPr(Xi = x),

Pr(D̂(x, t) < d, max
1≤i≤n

|θ̂i − θi| < rt)

≤ Pr(D∗(x, t) < d)

≤ Pr(|D∗(x, t)− E(D∗(x, t))| > d)

≤ d−2λ(nh2n)−1 1

2
f̄θ|XPr(Xi = x)→ 0

where the last inequality follows from Chebyschev’s inequality and the convergence follows

from Assumption C.6.

Therefore,

Pr(D̂(x, t)−1N̂(x, t) > ε∗/
√
nh2n, max

1≤i≤n
|θ̂i − θi| < h2n/4)

≤ Pr(|N̂(x, t)| > dε∗/
√
nh2n, max

1≤i≤n
|θ̂i − θi| < h2n/4) + Pr(D̂(x, t) < d, max

1≤i≤n
|θ̂i − θi| < h2n/4)

≤ 25λ̄2Ȳ 2

ε∗2d2
+

2λ̄αηJn
1/2

dε∗h
1/2
2n

+ o(1)

which implies the desired result, since the second term is o(1) by Assumption C.4.

C.3 Lemmas

Here I state and prove the lemmas used in the proof of Theorem 3.2 above.

Lemma C.1. max1≤i≤n |θ̂i − θi| = Op(rn) where

rn = h1n +
√

log(n)n−1h−1
1n

Proof. Define ρn = ρ0rn for some ρ0 > 0. I next show that for ρ0 sufficiently large

Pr(max1≤i≤n |θ̂i − θi| > ρn)→ 0.

First,

|θ̂i − θi| = |F̂q̂(X,M̄)(q̂(X, M̄))− θi| ≤
3∑
r=1

|T̂ri|
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where

T̂1i := F̂q̂(X,M̄)(q̂(X, M̄))− Fq̂(X,M̄)(q̂(X, M̄))

T̂2i := Fq̂(X,M̄)(q̂(X, M̄))− Fpj0 (θ)(q̂(Xi, M̄i))

T̂3i := Fpj0 (θ)(q̂(Xi, M̄i))− θi

First, for any δ > 0,

|T̂2i| ≤ sup
x∈[0,1]

|Fq̂(X,M̄)(x)− Fpj0 (θ)(x)|

≤ Pr(|q̂(X, M̄)− pj0(θ)| > δ) + sup
x∈[0,1]

{|Fpj0 (θ)(x+ δ)− Fpj0 (θ)(x)|

+ |Fpj0 (θ)(x)− Fpj0 (θ)(x− δ)|}

≤ Pr(|q̂(X, M̄)− pj0(θ)| > δ) +
2δ

m

where the third inequality follows from Assumption C.2. Take δ = ε∗mρn. Then by

Lemma C.2, if ε∗ is sufficiently large,

|T̂2i| ≤ c0n
−c1 + 2ε∗ρn

for any c1 > 0. So, for n large enough, Pr(|T̂2i| > ρn/3) = 0.

Second, by Assumption C.1, |T̂3i| = |Fpj0 (θ)(q̂(Xi, M̄i))−Fpj0 (θ)(pj0(θi))| ≤ 1
m
|q̂(Xi, M̄i)−

pj0(θi)|. So, for n large enough,

Pr(|T̂3i| > ρn/3) ≤ Pr(|q̂(Xi, M̄i)− pj0(θi)| > mρ0rn/3)

By Lemma C.2, ρ0 can be chosen large enough so that this is bounded by an arbitrarily

large power of n−1 for sufficiently large n.

Third, |T̂1i| ≤ supx∈[0,1] |F̂q̂(X,M̄)(x)−Fq̂(X,M̄)(x)|. Since F̂q̂(X,M̄) is the empirical distribu-

tion function of the random variable q̂(X, M̄), by the Dvoretsky-Kiefer-Wolfowitz inequality

(see, e.g., p. 268 in Van der Vaart, 2000),

Pr(|T̂1i| > ρn/3) ≤ 2 exp(−2

9
ρ2
nn) ≤ 2n−

2
9
ρ20
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Putting these three results together, if ρ0 is large enough, for all sufficiently large n

Pr( max
1≤i≤n

|θ̂i − θi| > ρn) ≤ n

3∑
r=1

Pr(|T̂ri| > ρn/3)→ 0

Lemma C.2. If δn = O(h1n+
√

log(n)n−1h−1
1n ) then for any c1 > 0 there exist ε∗ > 0, c0 > 0

and such that for sufficiently large n,

Pr(|q̂(X, M̄)− pj0(θ)| > ε∗δ) ≤ c0n
−c1

Proof. Recall that q(x,m) = pj0(p̄
−1(m;x)).

First, let ηj0,i := Mj0,i − pj0(θi). Because pj0(θi) = q(x, p̄(x, θi)), pj0(θi) − q(x,m) =

(q(x, p̄(x, θi))− q(x, M̄i)) + (q(x, M̄i)− q(x,m)). So

|q̂(x,m)− q(x,m)|

≤
1

nh1n

∑n
i=1 K

(
h−1

1n (M̄i −m)
)
1(Xi = x)|pj0(θi)− q(x,m)|

1
nh1n

∑n
i=1K

(
h−1

1n (M̄i −m)
)
1(Xi = x)

+

∣∣∣ 1
nh1n

∑n
i=1 K

(
h−1

1n (M̄i −m)
)

1(Xi = x)ηj0,i

∣∣∣
1

nh1n

∑n
i=1K

(
h−1

1n (M̄i −m)
)
1(Xi = x)

≤ max
1≤i≤n

1(Xi = x)|q(x, M̄i)− q(x, p̄(x, θi))|

+ max
1≤i≤n

1(|M̄i −m| < h1n)|q(x, M̄i)− q(x,m)|

+

∣∣∣ 1
nh1n

∑n
i=1 K

(
h−1

1n (M̄i −m)
)

1(Xi = x)ηj0,i

∣∣∣
1

nh1n

∑n
i=1K

(
h−1

1n (M̄i −m)
)
1(Xi = x)

≤ M

m
max
1≤i≤n

1(Xi = x)|M̄i − p̄(x, θi)|+
M

m
h1n +

|N̂(x,m)|
D̂(x,m)

where the second inequality follows from Assumption C.5 and the third follows from As-

sumption C.1 and

N̂(x,m) =
1

nh1n

n∑
i=1

K
(
h−1

1n (M̄i −m)
)
1(Xi = x)ηj0,i

D̂(x,m) =
1

nh1n

n∑
i=1

K
(
h−1

1n (M̄i −m)
)
1(Xi = x)
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Therefore, taking ε∗ large enough that M
m
h1n ≤ ε∗δn/6,

Pr(|q̂(x,m)− q(x,m)| > ε∗δn/2)

≤ nPr
(
|M̄i − p̄(x, θi)| >

m

M
ε∗δn/6 | Xi = x

)
+ Pr

(
|N̂(x,m)|
D̂(x,m)

> ε∗δn/6

)

≤ 2nkJ exp

(
−m

2ε∗2

18M2

NJδ
2
n

kJ

)
+

12MαkJ
mε∗δn

+ Pr

(
|N̂(x,m)|
D̂(x,m)

> ε∗δn/6

)

where the last inequality follows for any kJ ≥ 1 by applying Lemma A.2. Take kJ =

k0 log(NJ) for some k0 > 0. By Assumption C.6, for n large enough Jnδ
2
n > ρ0 log(Jn)2.

Therefore, because NJ = ηJn, ε∗ can be chosen so that the first term here is bounded by

an arbitrarily large power of n−1. By Assumption C.4, k0 can be chosen so that the second

term is also bounded by an arbitrarily large power of n−1 for sufficiently large n.

Next, let N̂∗(x,m) = E(N̂(x,m) | {Xi, θi, {Mi,j : |j − j0| > ηJ}}). Then

Pr(|N̂∗(x,m)| > ε/2) ≤ αηJ
εh1n

and since, by Assumption C.5, |N̂(x,m) − N̂∗(x,m)| ≤ κ̄, Bernstein’s inequality can be

applied to conclude that

Pr(|N̂(x,m)− N̂∗(x,m)| > ε/2) ≤ exp

(
−

1
2
nh2

1nε
2

E((K
(
h−1

1n (M̄i −m)
)2

1(Xi = x)η∗2j0,i) + 1
3
κ̄h1nε

)

where η∗j0,i = ηi,j0−E(ηi,j0 | Xi, θi, {Mi,j : |j− j0| > ηJ}). This can be bounded further since

E((K
(
h−1

1n (M̄i −m)
)2

1(Xi = x)η∗2j0,i) ≤
κ̄2

4
Pr(|M̄i −m| ≤ h1n | X = x)

≤ κ̄2Ch1n

where the first inequality follows from Assumption C.5 and the second follows, for sufficiently

large n, from Lemma C.3. Therefore, there are positive constants a and b such that

Pr(N̂(x,m) > ε) ≤ exp

(
−anh1nε

2

1 + bε

)
+
αηJ
εh1n

Next, there is a constant d > 0 such that E(D̂(x,m)) > d for sufficiently large n. To see

this, by Assumption C.5 and Lemma C.3, E(D̂(x,m)) ≥ κh−1
1nPr(|M̄ −m| < h1n/2 | X =
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x))Pr(X = x) ≥ κcPr(X = x) for sufficiently large n. Then

Pr

(
|N̂(x,m)|
D̂(x,m)

> ε∗δn/6

)
≤ Pr(|N̂(x,m)| > ε∗δnd/6) + Pr(|D̂(x,m)− E(D̂(x,m))| > d/2)

≤ exp

(
−anh1n(ε∗δnd/6)2

1 + b(ε∗δnd/6)

)
+ exp

(
−a
′nh1n(d/2)2

1 + b′(d/2)

)
+
αηJ
εh1n

where the third inequality follows for some positive constants a′, b′ by applying Bernstein’s

inequality to Pr(|D̂(x,m)−E(D̂(x,m))| > d/2) since (i) D̂(x,m)−E(D̂(x,m)) has mean 0

and is bounded and (ii) E(D̂(x,m)−E(D̂(x,m)))2 ≤ E(D̂(x,m)2) ≤ κ̄2Pr(|M̄i−m| ≤ h1n).

The second and third terms are bounded by an arbitrarily large power of n−1 for sufficiently

large n. And the first term is as well is ε∗ is chosen large enough.

Therefore, I can conclude that

J sup
x∈X ,m∈[p̄(x,θx)−γn,p̄(x,θ̄x)+γn]

Pr(|q̂(x,m)− q(x,m)| > ε∗δn/2) (C.1)

bounded by an arbitrarily large power of n−1 for sufficiently large n as well.

Next,

Pr(|q̂(Xi, M̄i)− pj0(θi)| > ε∗δn)

≤ Pr(|q̂(Xi, M̄i)− q(Xi, M̄i) > ε∗δn/2) + Pr(|q(Xi, M̄i)− pj0(θi)| > ε∗δn/2)

≤ dxJ sup
x∈X ,m∈[p̄(x,θx)−γn,p̄(x,θ̄x)+γn]

Pr(|q̂(x,m)− q(x,m)| > ε∗δn/2)

+ Pr(M̄i /∈ [p̄(Xi, θXi)− γn, p̄(Xi, θ̄Xi) + γn]) + Pr(|M̄i − p̄(Xi, θi)| >
mε∗δn
2M

)

where I have used that the support of X has dx points and the support of M̄ has J points

and that |q(Xi, M̄i)−pj0(θi)| ≤ M
m
|M̄i− p̄(Xi, θi)|. The second term is bounded by Pr(|M̄i−

p̄(Xi, θi)| > γn). Take γn =
√

κ
2
(log(J)/J)1/2, which satisfies the assumptions of Lemma C.3

by Assumption C.6. Then I can apply Lemma A.2 again to conclude that all three terms

here are bounded by an arbitrarily large power of n−1 for sufficiently large n, which is the

desired result.

Lemma C.3. There exist 0 < c < C such that for sufficiently large n, ch1n ≤ Pr(|M̄−m| ≤
h1n/2 | X = x) and Pr(|M̄ −m| ≤ h1n | X = x) ≤ Ch1n for all (x,m) such that x ∈ X and

m ∈ [p̄(x, θx)− γn, p̄(x, θ̄x) + γn] where γn = o(h1n).
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Proof. First,

Pr(|M̄i −m| ≤ h1n | Xi = x) (C.2)

≤ Pr(|p̄(x, θi)−m| ≤ 2h1n | Xi = x) + Pr(|M̄i − p̄(x, θi)| > h1n | Xi = x)

The first term is largest when m ∈ [p̄(x, θx) + 2h1n, p̄(x, θ̄x)− 2h1n] in which case it is equal

to Pr(|p̄(x, θi)− p̄(x, t)| ≤ 2h1n | Xi = x) for some t ∈ Θx, which is bounded by

Pr(|θi − t| ≤ 2h1n/m | Xi = x) = Fθ|X(t+ 2h1n/m)− Fθ|X(t− 2h1n/m)

≤ 4Bh1n/m

for some B > 0 by Assumption C.2. For any s > 0, the second term in (C.2) is bounded by

Pr(|M̄i − p̄(x, θi)| > s(log(Jn)/Jn)1/2 | Xi = x) for sufficiently large n. But by Lemma A.2,

s can be chosen large enough so that this is o(h1n).

Next,

Pr(|M̄i −m| ≤ h1n/2 | Xi = x) (C.3)

≥ Pr(|M̄ −m| ≤ h1n/2, |p̄(x, θi)−m| ≤ h1n/4 | Xi = x)

=

∫
t:|p̄(x,t)−m|≤h1n/4

(1− Pr(|M̄ −m| > h1n/2 | Xi = x, θi = t))fθ|X(t | x)dt (C.4)

≥
∫
t:|p̄(x,t)−m|≤h1n/4

(1− Pr(|M̄ − p̄(x, t)| > h1n/4 | Xi = x, θi = t))fθ|X(t | x)dt (C.5)

Applying Lemma A.2 again, the integrand is no less than 1 + o(h1n). So for sufficiently large

n,

Pr(|M̄i −m| ≤ h1n/2 | Xi = x)

≥ 1

2
Pr(|p̄(x, θi)−m| ≤ h1n/4 | Xi = x)(1 + o(h1n))

=
(
Fp̄(x,θ)|X(m+ h1n/4 | x)− Fp̄(x,θ)|X(m− h1n/4 | x)

)
(1 + o(h1n))

Now, if m − h1n/4 > p̄(x, θx) and m + h1n/4 < p̄(x, θ̄x) then this is no smaller than

f
θ|Xh1n/(2M) by Assumptions C.1 and C.2. If m−h1n/4 < p̄(x, θx) then it must be the case

that m+ h1n/4 > p̄(x, θx) for sufficiently large n because m+ h1n/4− p̄(x, θx) > h1n/4− γn
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and γn = o(h1n). Therefore, in that case,

Fp̄(x,θ)|X(m+ h1n/4 | x)− Fp̄(x,θ)|X(m− h1n/4 | x)

= Fp̄(x,θ)|X(m+ h1n/4 | x)− Fp̄(x,θ)|X(p̄(x, θx) | x)

≥ Fp̄(x,θ)|X(p̄(x, θx) + h1n/4− γn | x)− Fp̄(x,θ)|X(p̄(x, θx) | x)

≥ f
θ|X(h1n/4− γn)/M

The same argument applies for the case where m + h1n/4 > p̄(x, θ̄x). The desired result

follows with c̃ = f
θ|X/(8M).

D Additional details regarding Section 3

The ability estimates, θ̂i, rely crucially on the exclusion restriction, Assumption 2.4. Typ-

ically this could be justified based on the content of the questions if at least one question

plausibly depends only on skills taught before the lowest schooling level observed. The na-

ture of the available data precludes this because I do not have access to the text of the

questions asked for each item. However, assuming that the exclusion is satisfied for some

item, it is possible to identify this item j0 under the additional assumption that schooling

has a nonnegative effect on responses to the test questions. I implement this idea, as I will

now describe, to obtain an estimate, ĵ0 = 4.

First, evidence of an effect of education on the test score can be inferred without imposing

Assumption 2.4. The proof of Theorem 2.1 includes the intermediate result,

E(Y | M̄ = m,X = x) = G(x, p̄−1(m;x)) + δJ ,

where p̄−1(m;x) is the inverse in t of the function p̄(x, t) and δJ = o(1). Applying this here for

each s, E(M̃s | M̄ = m,X = x) = ps(x, p̄
−1(m;x)) + δJ . Define qs(x,m) = ps(x, p̄

−1(m;x)).

If pj(1, t) = pj(0, t) for all t and all j then qj(1,m) = qj(0,m) for all m and all j.3 Let

q̂s(x,m) denote a Nadaraya-Watson kernel estimator of E(M̃s | M̄ = m,X = x) and σ̂2
s(m)

a consistent estimate of the asymptotic variance of q̂s(1,m) − q̂s(0,m). Let m1, . . . ,mR

denote distinct points in the support of M̄ and define the test statistic

Ts =
R∑
r=1

(q̂s(1,mr)− q̂s(0,mr))
2

σ2
s(mr)

3The converse is not true. For example, if pj(x, t) = p1(x, t) for all j then qj(x,m) = m for all j and all
x. Thus, the test proposed here will not have power against alternatives in this direction.
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Under conditions ensuring that q̂s(x,m) is an asymptotically normal estimator for qs(x,m),

Ts →d χ
2
S if qs(1,m) = qs(0,m). Let p̂s denote the p-value associated with this test based

on the χ2
S distribution. To test the null hypothesis that college attendance does not have an

effect on any items on the test, while controlling the familywise error rate, I use a Bonferroni

correction. I reject the null at a significance level α if mins p̂s ≤ α
30

. Table A.1 reports the

results of this Chi-squared test for three different definitions of Xi. The null of no effect is

rejected in each of the three cases. For the remaining results I focus on the second case,

where Xi indicates whether the individual had completed high school or not at the time of

the test.

To identify j0, the item satisfying the exclusion restriction, I first observe that if pj(1, t) ≥
pj(0, t) for all t then p−1

j (π; 1) ≤ p−1
j (π; 0) for all m, where p−1

j (π;x) denotes the inverse in t

of pj(x, t). Let ψj,k(π) = pk(1, p
−1
j (π; 1))− pk(0, p−1

j (π; 0)). If the exclusion restriction holds

then j0 = arg mink maxj 6=k
∫
ψj,k(π)ωj(π)dπ for any strictly positive weights ωj(π).4,5

To implement this, the function pk(x, p
−1
j (π;x)) can be estimated in two steps. First,

compute q̂j(x,m) as described above (excluding both M̃j and M̃k from M̄). Second, compute

a Nadaraya-Watson kernel estimator of E(M̃ik | Xi = x, q̂j(Xi, M̄i) = π). Computing this

for both x = 0 and x = 1 and taking the difference, I obtain ψ̂j,k(π) for π in the common

support of q̂j(1, M̄i) | Xi = 1 and q̂j(0, M̄i) | Xi = 0. I then calculate

ĵ0 = arg min
k

max
j 6=k

n−1
j

n∑
i=1

ψ̂j,k(q̂ij)1(q̂ij ∈ Ŝj)

where q̂ij = q̂j(Xi, M̄i), Ŝj denotes an estimate of the common support and nj =
∑n

i=1 1(q̂ij ∈
Ŝj). Figure A.1 plots maxj 6=k n

−1
j

∑n
i=1 ψ̂j,k(q̂ij)1(q̂ij ∈ Ŝj) for each k.6 It is evident from the

graph that ĵ0 = 4.

E Computation of the identified set

In this section I provide further details on the method described in Section 5 for computing

the identified set. In E.1, I define the identified set for the model of Section 5. In E.2, I

describe the proposed procedure and prove that the approximation is valid and in E.3, I

describe computation of bounds on the identified set.

4This follows because ψj,j0(π) ≤ 0 for all j and ψj0,k(π) ≥ 0 for all k.
5If the exclusion restriction also holds for other items then j0 is not the unique minimizer. In that case,

all k∗ ∈ arg mink maxj 6=k

∫
ψj,k(π)ωj(π)dπ satisfy the exclusion restriction.

6I exclude k = 1, 2 from consideration because these items are correctly answered at a rate exceeding 90%
and would not sufficiently discriminate among different ability levels. That is, the corresponding response
functions are too flat.
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E.1 The identified set

The identified set can be defined as follows. First, stack the response functions into the

length J + 1 vector p(·, ·). The triple

γ = (G(·, ·),p(·, ·), Fθ|X(· | ·))

contains the “reduced form” parameters of the model. Let Γ denote the parameter space,

that is, the space of all triples γ satisfying Assumptions 2.3, 2.4 and 5.2. For any γ, let

µcJ x(γ) =

∫
G(x, t)cpJ (x, t)dFθ|X(t | x) (E.1)

for any c ∈ {0, 1} and any J ⊆ {1, . . . , J + 1}, and let mcJ x denote the observed moments,

E(Y c
∏

j∈J Mj | X = x).

Then the space of parameter values satisfying these moment conditions is

I = {γ ∈ Γ : µcJ x(γ) = mcJ x for all c = 0, 1,J ⊆ {1, . . . , J}, x ∈ X} (E.2)

The identified set for any object of interest that can be written as τ = τ(γ) ∈ R is defined

simply as τ(I). Further, I can define bounds

τ = inf
γ∈I

τ(γ), τ̄ = sup
γ∈I

τ(γ). (E.3)

E.2 Approximation method

Suppose that X = {0, 1} and that 0 ≤ Y ≤ 1. Since θ ∼ Uniform(0, 1), Fθ|X(t | 0) =
t−πFθ|X(t|1)

1−π where π = Pr(X = 1). Then Γ is a subspace of the space of 2(J + 1) functions

from [0, 1] to [0, 1], (G(0, ·), G(1, ·), p1(0, ·), . . . , pJ(1, ·), Fθ|X(· | 1)), where the last function

must satisfy πF (t) ≤ t. To approximate the identified set I further restrict Γ so that each

of the first 2J + 1 functions is Lipschitz continuous with Lipschitz constant L and the last,

Fθ|X(t | 1), admits a density function that is Lipschitz continuous with Lipschitz constant L.

Next, define a partition, 0 = t0 ≤ t1 . . . ≤ tS = 1. Let FS denote the space of length S

vectors v such that 0 ≤ v1 ≤ . . . ≤ vS ≤ 1 and maxs |vs − vs−1| ≤ L|ts − ts−1|. Then let ΓS

be the space of all (v, w) where v = (v1, . . . , v2J+1) ∈ F2J+1
S and w is in the S-dimensional

unit simplex and satisfies maxsws ≤ (ws − ws−1)/π and maxs |ws − ws−1| ≤ L(ts − ts−1)2.

Let IS denote the all γS = (GS
0 , G

S
1 , p

S
10, p

S
11, . . . , p

S
J0, p

S
J1,∆

S) ∈ ΓS such that M(γS) ≤ εS
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where

µScJ x(γ
S) :=

S∑
s=1

(GS
x,s)

cpSJ x,s

(
∆Sx+

(ts − ts−1)− π∆S

1− π
(1− x)

)

and

M(γS) =
∑
c,J ,x

wc,J ,x(mcJ x − µScJ x(γS))2

Next, for any γ = (v, w) ∈ ΓS, I can define a unique γ̄ = (v̄, Fw) ∈ Γ such that v̄(ts) = vs

and Fw(ts) − Fw(ts−1) = ws. I can do this via a linear interpolation between the points ts

and ts+1 and imposing Fw(0) = 0. Then define ĪS = {γ̄S : γS ∈ IS}. Note that for any γ̄S,

with a slight abuse of notation, we can say that M(γ̄S) ≤ εS as well.

The approximate bounds for a parameter τ(γ) are given by

τ lS = min
γS∈IS

τS(γS) (E.4)

τuS = max
γS∈IS

τS(γS)

where τS is an approximate version of the mapping τ that is defined on the partition {ts}
instead of on [0, 1].

Lastly, define the Hausdorff distance between two spaces,

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}

where d is a metric defined on a space containing A and B.

Theorem E.1. Let δS = max1≤s≤S(ts−ts−1). If δS → 0 and δ2
S/εS → 0 then dH(I, ĪS)→ 0.

As a result, if τ(γ) is a continuous functional and supγS∈ΓSL
|τS(γS) − τ(γ̄S)| → 0, then

τ lS → τ l and τuS → τu.

Proof. First, if γ ∈ I then define γS ∈ IS by restricting (G(0, ·), G(1, ·), p1(0, ·), . . . , pJ(1, ·))
to the points t0, . . . , tS defining the partition and by defining ∆S

s =
∫ ts
ts−1

fθ|X(t | 1)dt.

Then

mcJ x − µSycJ x(γS) =
S∑
s=1

∫ ts

ts−1

(G(x, t)cpJ (x, t)−G(x, ts)
cpJ (x, ts)) fθ|X(t | 1)dt
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and by monotonicity, G(x, ts−1)cpJ (x, ts−1) ≤ G(x, t)cpJ (x, t) ≤ G(x, ts)
cpJ (x, ts) so∫ ts

ts−1

(G(x, t)cpJ (x, t)−G(x, ts)
cpJ (x, ts)) fθ|X(t | 1)dt ≤ 0

and ∫ ts

ts−1

(G(x, t)cpJ (x, t)−G(x, ts)
cpJ (x, ts)) fθ|X(t | 1)dt

≥ − ((G(x, ts))
cpJ (x, ts)− (G(x, ts−1))cpJ (x, ts−1))

∫ ts

ts−1

fθ|X(t | 1)dt

Noting that πfθ|X(t | 1) ≤ 1, by assumption, I can conclude that

|mcJ x − µSycJ x(γS)| ≤ δS ((G(x, tS))cpJ (x, tS)− (G(x, t0))cpJ (x, t0))

≤ δS

Therefore, since
∑

c,J ,x |wc,J ,x| = 1, M(γS) ≤ δ2
S. By assumption, δS/εS → 0 and therefore,

M(γS) ≤ εS for sufficiently large S. Hence γS ∈ IS for S large enough. For any γS, the

linear interpolation, γ̄S, must satisfy d(γS, γ̄S) ≤ LδS, implying that

sup
γ∈I

inf
γ̄S∈ĪS

d(γ, γ̄S) ≤ δS → 0

Next, suppose supγ̄S∈ĪS infγ∈I d(γ, γ̄S) 6→ 0. Then there is a subsequence, {γ̄Sk}, such

that Sk → ∞ as k → ∞ but infγ∈I d(γ, γ̄Sk) > ρ for all k. However, because Γ is compact,

this subsequence has a further subsequence along which it converges to some γ∞ ∈ Γ.

Then, because M(γ̄S) ≤ εS, it must be the case that |mcJ x − µScJ x(γ̄S)| → 0 for each

c ∈ {0, 1}, J and x ∈ {0, 1}. So, using the fact that, by definition of γ∞, d(γ̄Skm , γ∞)→ 0∣∣∣∣mcJ x −
∫ 1

0

(G∞(x, t))cp∞J (x, t)dt

∣∣∣∣
≤ |Py,J − µ

Skm
cJ x (γ̄Skm )|+

∣∣∣∣µSkmcJ x (γ̄Skm )−
∫ 1

0

(GSkm (x, t))cp
Skm
J (x, t)dt

∣∣∣∣+ d(γ̄Skm , γ∞)

−→ 0,

which implies that
∣∣∣mcJ x −

∫ 1

0
(G∞(x, t))cp∞J (x, t)dt

∣∣∣ = 0 and, hence, that γ∞ ∈ I. So

infγ∈I d(γ, p̄Skm ) ≤ d(γ∞, γ̄Skm ) → 0, which is a contradiction. Thus the first part of the

theorem has been proven.
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The second conclusion of the theorem follows because

sup
γS∈IS

τS(γS) ≤ sup
γ∈I

τ(γ) + sup
γS∈ΓS

|τS(γS)− τ(γ̄S)|+ dH(τ(I), τ(ĪS))

−→ sup
γ∈I

τ(γ)

and

inf
γS∈IS

τS(γS) ≤ inf
γ∈I

τ(γ)− sup
γS∈ΓS

|τS(γS)− τ(γ̄S)| − dH(τ(I), τ(ĪS))

−→ inf
γ∈I

τ(γ)

E.3 Estimation of bounds

Following Chernozhukov et al. (2013), I replace the construction (E.4) with the computa-

tionally simpler problem,

τ lS = min{τ : QS(τ) ≤ ε} (E.5)

τuS = max{τ : QS(τ) ≤ ε}

where

QS(τ) = minγS∈ΓSM(γS) (E.6)

s.t. τ(γS) = τ

To estimate the bounds, replace π = Pr(X = 1) with π̂ = n−1
∑n

i=1Xi and

M̂(γS) =
∑
c,J ,x

wc,J ,x(m̂cJ x − µScJ x(γS))2

where m̂cJ x is the sample analogue of the moments mcJ x. Then

τ lS = min{τ : Q̂S(τ) ≤ ε} (E.7)

τuS = max{τ : Q̂S(τ) ≤ ε}
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where

Q̂S(τ) = minγS∈ΓSM̂(γS) (E.8)

s.t. τ(γS) = τ
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item adj.	  p-‐value item adj.	  p-‐value item adj.	  p-‐value item adj.	  p-‐value item adj.	  p-‐value item adj.	  p-‐value
1 27.76 16 8.52 1 22.55 16 16.47 1 3.84 16 6.90
2 8.54 17 0.00*** 2 14.19 17 0.05** 2 13.05 17 1.44
3 7.87 18 16.34 3 16.36 18 5.77 3 8.06 18 0.00***
4 11.79 19 1.91 4 2.89 19 11.08 4 1.37 19 2.48
5 12.41 20 2.95 5 28.81 20 10.99 5 3.05 20 13.88
6 1.13 21 1.49 6 15.74 21 1.89 6 4.81 21 2.06
7 11.13 22 0.16 7 18.65 22 0.01*** 7 6.82 22 0.00***
8 9.26 23 26.54 8 6.47 23 0.42 8 2.99 23 0.00***
9 2.22 24 18.51 9 4.70 24 4.16 9 17.04 24 0.00***
10 4.13 25 17.87 10 2.18 25 29.19 10 5.87 25 17.28
11 21.30 26 7.74 11 29.28 26 5.94 11 14.17 26 0.17
12 24.89 27 19.98 12 23.87 27 14.91 12 2.83 27 5.81
13 13.23 28 29.55 13 1.59 28 19.47 13 0.00*** 28 0.00***
14 8.54 29 28.71 14 25.59 29 15.70 14 0.12 29 0.12
15 0.43 30 9.45 15 1.29 30 3.81 15 0.12 30 2.09

A.	  ≥	  11	  years B.	  ≥	  12	  years C.	  Some	  college
Table	  1.	  Chi-‐squared	  test	  of	  no	  schooling	  effect

Notes:	  For	  each	  item	  a	  chi-‐squared	  test	  was	  performed	  as	  described	  in	  the	  text.	  Each	  p-‐value	  is	  adjusted	  by	  multiplying	  by	  30	  
(the	  Bonferonni	  correction)	  and	  the	  adjusted	  p-‐values	  are	  reported	  in	  this	  table.	  The	  headings	  for	  the	  three	  panels	  indicate	  
how	  the	  education	  variable	  was	  defined.	  For	  example,	  for	  the	  results	  in	  Panel	  A,	  the	  education	  variable	  indicated	  whether	  the	  
individual	  had	  completed	  at	  least	  11	  years	  of	  education.	  In	  each	  case	  the	  entire	  sample	  of	  1,929	  individuals	  was	  used.	  *,**,	  
and	  ***	  indicate	  significance	  at	  a	  10%,	  5%,	  and	  1%	  level.	  	  	  



Figure A.1: Choice of j0 among items in the AR component of the ASVAB
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Notes: This figure plots maxj 6=k n
−1
j

∑n
i=1 ψ̂j,k(q̂ij)1(q̂ij ∈ Ŝj) for each k from 3 to 30, as described in online

appendix D. The Epanechnikov kernel was used in constructing the estimates q̂j , as well as ψ̂j,k. Estimates

are based on a sample of size 1, 927 from the NLSY79.
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